-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathNIfTIMRSRead.m
496 lines (435 loc) · 16.1 KB
/
NIfTIMRSRead.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
% NIfTIMRSRead
% Code borrowed from Osprey's io_loadspec_niimrs.m, created by Georg
% Oeltzschner, Johns Hopkins University (2021)
%
% Adapted for Gannet by Mark Mikkelsen, Weill Cornell Medicine (2022)
%
% Description:
% Reads in MRS data stored according to the NIfTI-MRS format
% (https://doi.org/10.1002/mrm.29418)
%
% Dependencies:
% This function requires the dcm2nii toolbox (Xiangrui Li) in the main
% Gannet folder to be on the MATLAB search path
% (https://github.com/xiangruili/dicm2nii)
function MRS_struct = NIfTIMRSRead(MRS_struct, fname, fname_w)
ii = MRS_struct.ii;
% Read in the data using the dicm2nii toolbox
% (https://github.com/xiangruili/dicm2nii)
try
nii = nii_tool('load', fname);
catch ME
switch ME.identifier
case 'MATLAB:UndefinedFunction'
error(['Cannot find the function ''nii_tool.m''. ' ...
'Please ensure that you have added the dcm2nii ', ...
'folder in the main Gannet folder to your MATLAB ', ...
'search path.']);
otherwise
rethrow(ME);
end
end
% Extract the header and header extensions
hdr = nii.hdr;
hdr_ext = jsondecode(nii.ext.edata_decoded);
% Extract the raw time-domain data
fids = double(nii.img);
if isfield(hdr_ext, 'Manufacturer')
MRS_struct.p.NIfTI.manufacturer = hdr_ext.Manufacturer;
end
MRS_struct.p.LarmorFreq(ii) = hdr_ext.SpectrometerFrequency;
MRS_struct.p.sw(ii) = 1/hdr.pixdim(5);
if isfield(hdr_ext, 'Manufacturer') && strcmpi(hdr_ext.Manufacturer, 'GE')
MRS_struct.p.TE(ii) = hdr_ext.EchoTime / 1e3;
MRS_struct.p.TR(ii) = hdr_ext.RepetitionTime / 1e3;
else
MRS_struct.p.TE(ii) = hdr_ext.EchoTime * 1e3;
MRS_struct.p.TR(ii) = hdr_ext.RepetitionTime * 1e3;
end
MRS_struct.p.voxdim(ii,:) = hdr.pixdim(2:4);
% Specify dimensions
[dims, fids, npoints] = specify_dims(hdr, hdr_ext, fids);
sz = size(fids);
MRS_struct.p.npoints(ii) = npoints;
if dims.averages && dims.subSpecs
MRS_struct.p.Navg(ii) = sz(dims.averages) * sz(dims.subSpecs);
elseif length(sz) == 2 && sz(2) == 1
MRS_struct.p.Navg(ii) = 1;
else
MRS_struct.p.Navg(ii) = sz(dims.averages);
end
if dims.averages && dims.subSpecs
fids = reshape(fids, [sz(dims.t) sz(dims.coils) sz(dims.averages) * sz(dims.subSpecs)]);
fids = permute(fids, [2 1 3]);
end
% Load water reference
if nargin == 3
nii_w = nii_tool('load', fname_w);
hdr_w = nii.hdr;
hdr_w_ext = jsondecode(nii.ext.edata_decoded);
fids_w = double(nii_w.img);
MRS_struct.p.sw_water(ii) = 1/hdr_w.pixdim(5);
if strcmpi(hdr_w_ext.Manufacturer, 'GE')
MRS_struct.p.TE_water(ii) = hdr_w_ext.EchoTime / 1e3;
MRS_struct.p.TR_water(ii) = hdr_w_ext.RepetitionTime / 1e3;
else
MRS_struct.p.TE_water(ii) = hdr_w_ext.EchoTime * 1e3;
MRS_struct.p.TR_water(ii) = hdr_w_ext.RepetitionTime * 1e3;
end
% Specify dimensions
[dims_w, fids_w] = specify_dims(hdr_w, hdr_w_ext, fids_w);
sz_w = size(fids_w);
MRS_struct.p.npoints_water(ii) = sz_w(dims_w.t);
if dims_w.averages && dims_w.subSpecs
MRS_struct.p.Nwateravg(ii) = sz_w(dims_w.averages) * sz_w(dims_w.subSpecs);
elseif length(sz_w) == 2 && sz_w(2) == 1
MRS_struct.p.Nwateravg(ii) = 1;
else
MRS_struct.p.Nwateravg(ii) = sz_w(dims_w.averages);
end
if dims_w.averages && dims_w.subSpecs
fids_w = reshape(fids_w, [sz_w(dims_w.t) sz_w(dims_w.coils) sz_w(dims_w.averages) * sz_w(dims_w.subSpecs)]);
fids_w = permute(fids_w, [2 1 3]);
end
end
if dims.coils > 0
% Combine coils using generalized least squares method (An et al.,
% JMRI, 2013, doi:10.1002/jmri.23941); the noise covariance matrix is
% more optionally estimated by using all averages as suggested by
% Rodgers & Robson (MRM, 2010, doi:10.1002/mrm.22230)
if nargin == 3
[nCh, nPts, nReps] = size(fids_w);
noise_pts = false(1,nPts);
noise_pts(ceil(0.75*nPts):end) = true;
noise_pts = repmat(noise_pts, [1 nReps]);
tmp_fids_w = reshape(fids_w, [nCh nPts*nReps]);
e = tmp_fids_w(:,noise_pts);
Psi = e*e';
fids_w_avg = mean(fids_w,3);
S = fids_w_avg(:,1);
w = (S'*(Psi\S))^-1 * S' / Psi;
fids_w = w.' .* fids_w;
MRS_struct.fids.data_water = mean(squeeze(sum(fids_w,1)),2);
end
[nCh, nPts, nReps] = size(fids);
noise_pts = false(1,nPts);
noise_pts(ceil(0.75*nPts):end) = true;
noise_pts = repmat(noise_pts, [1 nReps]);
tmp_fids = reshape(fids, [nCh nPts*nReps]);
e = tmp_fids(:,noise_pts);
Psi = e*e';
if nargin == 2
fids_avg = mean(fids,3);
S = fids_avg(:,1);
end
w = (S'*(Psi\S))^-1 * S' / Psi;
fids = w.' .* fids;
MRS_struct.fids.data = squeeze(sum(fids,1));
else
MRS_struct.fids.data = fids;
if nargin == 3
if dims_w.averages > 0
MRS_struct.fids.data_water = mean(fids_w,2);
else
MRS_struct.fids.data_water = fids_w;
end
end
end
switch upper(hdr_ext.Manufacturer)
case {'GE','SIEMENS'}
if dims.averages && dims.subSpecs
if sz(dims.subSpecs) >= 2
ind = 1:size(MRS_struct.fids.data,2);
ind = reshape(ind, [sz(dims.averages)*sz(dims.subSpecs)/sz(dims.subSpecs) sz(dims.subSpecs)])';
ind = ind(:);
MRS_struct.fids.data = MRS_struct.fids.data(:,ind);
end
end
case 'PHILIPS'
% Undo phase cycling
corrph = repmat([-1 1], [1 size(MRS_struct.fids.data,2)/2]);
corrph = repmat(corrph, [size(MRS_struct.fids.data,1) 1]);
MRS_struct.fids.data = MRS_struct.fids.data .* corrph;
% Re-introduce initial phase step
if MRS_struct.p.HERMES
% if strcmp(MRS_struct.p.ON_OFF_order,'offfirst')
phi = repelem(conj(MRS_struct.fids.data(1,2:2:end)) ./ abs(MRS_struct.fids.data(1,2:2:end)),2);
% elseif strcmp(MRS_struct.p.ON_OFF_order,'onfirst')
% ind1 = sort([1:4:size(MRS_struct.fids.data,2) 2:4:size(MRS_struct.fids.data,2)]);
% ind2 = sort([3:4:size(MRS_struct.fids.data,2) 4:4:size(MRS_struct.fids.data,2)]);
% phi(ind1) = repelem(conj(MRS_struct.fids.data(1,1:4:end)) ./ abs(MRS_struct.fids.data(1,1:4:end)),2);
% phi(ind2) = repelem(conj(MRS_struct.fids.data(1,4:4:end)) ./ abs(MRS_struct.fids.data(1,4:4:end)),2);
% end
MRS_struct.fids.data = MRS_struct.fids.data .* repmat(phi, [MRS_struct.p.npoints(ii) 1]);
else
if strcmp(MRS_struct.p.target{1}, 'GSH')
MRS_struct.fids.data = MRS_struct.fids.data .* ...
repmat(conj(mean(MRS_struct.fids.data(1,:))) ./ abs(mean(MRS_struct.fids.data(1,:))), size(MRS_struct.fids.data));
else
MRS_struct.fids.data = MRS_struct.fids.data .* ...
repmat(conj(MRS_struct.fids.data(1,:)) ./ abs(MRS_struct.fids.data(1,:)), [MRS_struct.p.npoints(ii) 1]);
end
end
if nargin == 3
MRS_struct.fids.data_water = MRS_struct.fids.data_water .* ...
conj(MRS_struct.fids.data_water(1)) ./ abs(MRS_struct.fids.data_water(1));
end
end
end
function [dims, fids, npoints] = specify_dims(hdr, hdr_ext, fids)
% In NIfTI MRS, the three spatial dimensions and the time dimension occupy
% fixed indices in the (maximum) 7-D array
dims.x = 1;
dims.y = 2;
dims.z = 3;
dims.t = 4;
% There are some pre-defined dimension names according to the FID-A
% convention. These dimensions may or may not be stored in the NIfTI MRS
% header, so we'll initialize them as 0.
dims.coils = 0;
dims.averages = 0;
dims.subSpecs = 0;
dims.extras = 0;
% The NIfTI MRS standard reserves the remaining 3 dimensions, which are
% then explicitly specified in the JSON header extension fields dim_5,
% dim_6 and dim_7.
dims = parse_hdr_ext(hdr_ext, dims);
% Parse the NIfTI hdr.dim field:
all_dims = hdr.dim(2:end); % all dimensions (including singletons)
% Find the number of points
npoints = all_dims(dims.t);
% ORDERING THE DATA AND DIMENSIONS
% The FID-A array ordering conventions differ from the NIfTI MRS
% convention.
if prod(all_dims(1:3)) == 1 % x=y=z=1
dims.x = 0;
dims.y = 0;
dims.z = 0;
fids = squeeze(fids);
%Now that we've indexed the dimensions of the data array, we now need to
%permute it so that the order of the dimensions is standardized: we want
%the order to be as follows:
% 1) time domain data.
% 2) coils.
% 3) averages.
% 4) subSpecs.
% 5) extras.
% Adjust dimension indices for the fact that we have collapsed the
% three spatial dimensions (which we don't need for SVS data)
sqz_dims = {};
dims_fieldnames = fieldnames(dims);
for jj = 1:length(dims_fieldnames)
if dims.(dims_fieldnames{jj}) ~= 0
% Subtract 3 (x, y, z) from the dimension indices
dims.(dims_fieldnames{jj}) = dims.(dims_fieldnames{jj}) - 3;
sqz_dims{end+1} = dims_fieldnames{jj}; %#ok<*AGROW>
end
end
if length(sqz_dims) == 5
fids = permute(fids, [dims.t dims.coils dims.averages dims.subSpecs dims.extras]);
dims.t = 1;
dims.coils = 2;
dims.averages = 3;
dims.subSpecs = 4;
dims.extras = 5;
elseif length(sqz_dims) == 4
if dims.extras == 0
fids = permute(fids, [dims.t dims.coils dims.averages dims.subSpecs]);
dims.t = 1;
dims.coils = 2;
dims.averages = 3;
dims.subSpecs = 4;
dims.extras = 0;
elseif dims.subSpecs == 0
fids = permute(fids, [dims.t dims.coils dims.averages dims.extras]);
dims.t = 1;
dims.coils = 2;
dims.averages = 3;
dims.subSpecs = 0;
dims.extras = 4;
elseif dims.averages == 0
fids = permute(fids, [dims.t dims.coils dims.subSpecs dims.extras]);
dims.t = 1;
dims.coils = 2;
dims.averages = 0;
dims.subSpecs = 3;
dims.extras = 4;
elseif dims.coils == 0
fids = permute(fids, [dims.t dims.averages dims.subSpecs dims.extras]);
dims.t = 1;
dims.coils = 0;
dims.averages = 2;
dims.subSpecs = 3;
dims.extras = 4;
end
elseif length(sqz_dims) == 3
if dims.extras == 0 && dims.subSpecs == 0
fids = permute(fids, [dims.t dims.coils dims.averages]);
dims.t = 1;
dims.coils = 2;
dims.averages = 3;
dims.subSpecs = 0;
dims.extras = 0;
elseif dims.extras == 0 && dims.averages == 0
fids = permute(fids, [dims.t dims.coils dims.subSpecs]);
dims.t = 1;
dims.coils = 2;
dims.averages = 0;
dims.subSpecs = 3;
dims.extras = 0;
elseif dims.extras == 0 && dims.coils == 0
fids = permute(fids, [dims.t dims.averages dims.subSpecs]);
dims.t = 1;
dims.coils = 0;
dims.averages = 2;
dims.subSpecs = 3;
dims.extras = 0;
end
elseif length(sqz_dims) == 2
if dims.extras == 0 && dims.subSpecs == 0 && dims.averages == 0
fids = permute(fids, [dims.t dims.coils]);
dims.t = 1;
dims.coils = 2;
dims.averages = 0;
dims.subSpecs = 0;
dims.extras = 0;
elseif dims.extras == 0 && dims.subSpecs == 0 && dims.coils == 0
fids = permute(fids, [dims.t dims.averages]);
dims.t = 1;
dims.coils = 0;
dims.averages = 2;
dims.subSpecs = 0;
dims.extras = 0;
elseif dims.extras == 0 && dims.averages == 0 && dims.coils == 0
fids = permute(fids, [dims.t dims.subSpecs]);
dims.t = 1;
dims.coils = 0;
dims.averages = 0;
dims.subSpecs = 2;
dims.extras = 0;
end
elseif length(sqz_dims) == 1
dims.t = 1;
dims.coils = 0;
dims.averages = 0;
dims.subSpecs = 0;
dims.extras = 0;
end
else
fprintf('\n');
error('Data are not single-voxel data. Exiting...');
end
end
function dims = parse_hdr_ext(hdr_ext, dims)
if isfield(hdr_ext, 'dim_5')
dim_number = 5;
% This field may come in as a cell or a string.
if iscell(hdr_ext.dim_5)
dim_5 = hdr_ext.dim_5{1};
else
dim_5 = hdr_ext.dim_5;
end
switch dim_5
case 'DIM_COIL'
dims.coils = dim_number;
case 'DIM_DYN'
dims.averages = dim_number;
case 'DIM_INDIRECT_0'
dims.extras = dim_number;
case 'DIM_INDIRECT_1'
dims.extras = dim_number;
case 'DIM_INDIRECT_2'
dims.extras = dim_number;
case 'DIM_PHASE_CYCLE'
dims.extras = dim_number;
case 'DIM_EDIT'
dims.subSpecs = dim_number;
case 'DIM_MEAS'
dims.extras = dim_number;
case 'DIM_USER_0'
dims.extras = dim_number;
case 'DIM_USER_1'
dims.extras = dim_number;
case 'DIM_USER_2'
dims.extras = dim_number;
case 'DIM_ISIS'
dims.subSpecs = dim_number;
otherwise
error('Unknown dimension value specified in dim_5: %s', dim_5);
end
end
if isfield(hdr_ext, 'dim_6')
dim_number = 6;
% This field may come in as a cell or a string.
if iscell(hdr_ext.dim_6)
dim_6 = hdr_ext.dim_6{1};
else
dim_6 = hdr_ext.dim_6;
end
switch dim_6
case 'DIM_COIL'
dims.coils = dim_number;
case 'DIM_DYN'
dims.averages = dim_number;
case 'DIM_INDIRECT_0'
dims.extras = dim_number;
case 'DIM_INDIRECT_1'
dims.extras = dim_number;
case 'DIM_INDIRECT_2'
dims.extras = dim_number;
case 'DIM_PHASE_CYCLE'
dims.extras = dim_number;
case 'DIM_EDIT'
dims.subSpecs = dim_number;
case 'DIM_MEAS'
dims.extras = dim_number;
case 'DIM_USER_0'
dims.extras = dim_number;
case 'DIM_USER_1'
dims.extras = dim_number;
case 'DIM_USER_2'
dims.extras = dim_number;
case 'DIM_ISIS'
dims.subSpecs = dim_number;
otherwise
error('Unknown dimension value specified in dim_6: %s', dim_6);
end
end
if isfield(hdr_ext, 'dim_7')
dim_number = 7;
% This field may come in as a cell or a string.
if iscell(hdr_ext.dim_7)
dim_7 = hdr_ext.dim_7{1};
else
dim_7 = hdr_ext.dim_7;
end
switch dim_7
case 'DIM_COIL'
dims.coils = dim_number;
case 'DIM_DYN'
dims.averages = dim_number;
case 'DIM_INDIRECT_0'
dims.extras = dim_number;
case 'DIM_INDIRECT_1'
dims.extras = dim_number;
case 'DIM_INDIRECT_2'
dims.extras = dim_number;
case 'DIM_PHASE_CYCLE'
dims.extras = dim_number;
case 'DIM_EDIT'
dims.subSpecs = dim_number;
case 'DIM_MEAS'
dims.extras = dim_number;
case 'DIM_USER_0'
dims.extras = dim_number;
case 'DIM_USER_1'
dims.extras = dim_number;
case 'DIM_USER_2'
dims.extras = dim_number;
case 'DIM_ISIS'
dims.subSpecs = dim_number;
otherwise
error('Unknown dimension value specified in dim_7: %s', dim_7);
end
end
end