-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathx64.h
942 lines (822 loc) · 26.3 KB
/
x64.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
#pragma once
// ---
// Author: Martin 'Halt' Cohen, @martin_cohen
// License: MIT (see LICENSE)
// ---
#include <stdbool.h>
#include <stdint.h>
// NOTE: To use these, you'll have to include appropriate headers yourself.
#ifndef X64_ERROR
#define X64_ERROR(Message) { printf(Message); abort(); }
#endif
#ifndef X64_ASSERT
#define X64_ASSERT assert
#endif
#ifndef X64_ASSERT_DEBUG
#define X64_ASSERT_DEBUG assert
#endif
#define X64_TODO X64_ERROR("todo")
typedef enum X64Reg {
X64_None = 0,
X64_RAX, // 000
X64_RCX, // 001
X64_RDX, // 010
X64_RBX, // 011
X64_RSP, // 100
X64_RBP, // 101
X64_RSI, // 110
X64_RDI, // 111
X64_R8, // 1.000
X64_R9, // 1.001
X64_R10, // 1.010
X64_R11, // 1.011
X64_R12, // 1.100
X64_R13, // 1.101
X64_R14, // 1.110
X64_R15, // 1.111
X64Reg_LAST__,
// Special-case register, used for RIP-based addressing mode with Mod R/M.
X64_RIP,
} X64Reg;
#define x64reg_check(Reg) \
X64_ASSERT_DEBUG((Reg) > X64_None && (Reg) < X64Reg_LAST__)
#define x64reg_is_int_ext(Reg) \
((Reg) >= X64_R8 && (Reg) <= X64_R15)
//
//
//
typedef enum X64Size {
X64_SDefault,
X64_S8,
X64_S16,
X64_S32,
X64_S64,
} X64Size;
typedef enum X64Scale {
X64_X1 = 0b00,
X64_X2 = 0b01,
X64_X4 = 0b10,
X64_X8 = 0b11,
} X64Scale;
typedef enum X64OperandKind {
X64O_Reg,
X64O_Mem,
X64O_Imm
} X64OperandKind;
typedef struct X64Operand {
X64OperandKind kind;
union {
X64Reg reg;
struct {
X64Reg base;
X64Reg index;
X64Scale scale;
// TODO: Is this supposed to be signed int?
int32_t displacement;
} mem;
uint64_t imm;
};
} X64Operand;
#define x64o_pair(A, B) ((A << 4) | B)
#define x64r(Reg) \
(X64Operand) { .kind = X64O_Reg, .reg = Reg }
#define x64m(Base, Index, Scale, Displacement) \
(X64Operand) { \
.kind = X64O_Mem, \
.mem.base = Base, \
.mem.index = Index, \
.mem.scale = Scale, \
.mem.displacement = Displacement \
}
#define x64i(Immediate) \
(X64Operand) { .kind = X64O_Imm, .imm = (Immediate) }
#define x64o_swap(A, B) { \
X64Operand t = A; \
A = B; \
B = t; \
}
//
//
//
typedef enum X64ModRMMode {
X64ModRM_Indirect = 0b00,
X64ModRM_IndirectDisp8 = 0b01,
X64ModRM_IndirectDisp32 = 0b10,
X64ModRM_Direct = 0b11,
} X64ModRMMode;
//
//
//
// Whenever we have `rm` we encode other register in modrm.reg.
// Otherwise (reg/imm) we encode register in opcode.
// Using int16_t to be able to denote -1 as "not available" in
// case the opset doesn't support it. This is because `0` is
// used with ADD r/m8,r8.
typedef struct X64OpBinary
{
// Register in modrm.reg
// Opcode must support 16, 32 and 64 operand sizes.
int16_t reg_rm;
// Register in modrm.reg
// Opcode must support 16, 32 and 64 operand sizes.
int16_t rm_reg;
// Register in modrm.reg.
int16_t rm8_reg8;
// Register in modrm.reg.
// In case of (reg8, reg8) GCC seems to refer rm8_reg8,
// while ML64 preferes reg8_rm8.
// TODO: Check if there's any difference.
int16_t reg8_rm8;
// rmX_immX:
// - In case when used for writing to a register:
// - modrm.mode = 11
// - modrm.reg = 0
// - modrm.rm = destination register
// rmX_immX
// Opcode must support 16, 32 and 64 operand sizes.
int16_t rm_imm8;
// Extends rm_imm8 opcode with modrm.reg field.
// Opcode must support 16, 32 and 64 operand sizes.
int16_t rm_imm8_op;
// rmX_immX
// Opcode must support 16, 32 and 64 operand sizes.
int16_t rm_imm32;
// Extends rm_imm32 opcode with modrm.reg field.
int16_t rm_imm32_op;
// rmX_immX
// So far all opcodes have this note: In 64-bit no AH, BH, CH, DH.
int16_t rm8_imm8;
// Extends rm8_imm8 opcode with modrm.reg field.
int16_t rm8_imm8_op;
// Regsiter in opcode.
int16_t reg8_imm8;
// Register in opcode.
// In 64-bit the imm32 is sign-extended to 64-bit.
// So far all opcodes support 16, 32 and sign-extended 64.
int16_t reg32_imm32;
// Register in opcode.
// So far reg32_imm32 with reg.
// So far only mov has this variant.
int16_t reg64_imm64;
} X64OpBinary;
const X64OpBinary X64Op_Mov =
{
.reg_rm = 0x8B,
.rm_reg = 0x89,
.rm8_reg8 = 0x88,
.reg8_rm8 = 0x8A,
.rm_imm8 = -1,
.rm_imm32 = 0xC7, .rm_imm32_op = 0,
.rm8_imm8 = 0xC6, .rm8_imm8_op = 0,
.reg8_imm8 = 0xB0,
.reg32_imm32 = 0xB8,
.reg64_imm64 = 0xB8,
};
const X64OpBinary X64Op_Sub =
{
.reg_rm = 0x2B,
.rm_reg = 0x29,
.rm8_reg8 = 0x28,
.reg8_rm8 = 0x2A,
.rm_imm8 = 0x83, .rm_imm8_op = 5,
.rm_imm32 = 0x81, .rm_imm32_op = 5,
.rm8_imm8 = 0x80, .rm8_imm8_op = 5,
.reg8_imm8 = -1, // Not available.
.reg32_imm32 = -1, // Not available.
.reg64_imm64 = -1, // Not available.
// TODO: reg8_imm8 only for AL
// TODO: reg32_imm32 only for AX, EAX, RAX.
};
const X64OpBinary X64Op_Add =
{
.reg_rm = 0x03,
.rm_reg = 0x01,
.rm8_reg8 = 0x00,
.reg8_rm8 = 0x02,
.rm_imm8 = 0x83, .rm_imm8_op = 0,
.rm_imm32 = 0x81, .rm_imm32_op = 0,
.rm8_imm8 = 0x80, .rm8_imm8_op = 0,
.reg8_imm8 = -1,
.reg32_imm32 = -1,
.reg64_imm64 = -1,
// TODO: reg8_imm8 only for AL
// TODO: reg32_imm32 only for AX, EAX, RAX.
};
const X64OpBinary X64Op_And =
{
.reg_rm = 0x23,
.rm_reg = 0x21,
.rm8_reg8 = 0x20,
.reg8_rm8 = 0x22,
.rm_imm8 = 0x83, .rm_imm8_op = 4,
.rm_imm32 = 0x81, .rm_imm32_op = 4,
.rm8_imm8 = 0x80, .rm8_imm8_op = 4,
.reg8_imm8 = -1,
.reg32_imm32 = -1,
.reg64_imm64 = -1,
};
const X64OpBinary X64Op_Or =
{
.reg_rm = 0x0B,
.rm_reg = 0x09,
.rm8_reg8 = 0x08,
.reg8_rm8 = 0x0A,
.rm_imm8 = 0x83, .rm_imm8_op = 1,
.rm_imm32 = 0x81, .rm_imm32_op = 1,
.rm8_imm8 = 0x80, .rm8_imm8_op = 1,
.reg8_imm8 = -1,
.reg32_imm32 = -1,
.reg64_imm64 = -1,
};
const X64OpBinary X64Op_Xor =
{
.reg_rm = 0x33,
.rm_reg = 0x31,
.rm8_reg8 = 0x30,
.reg8_rm8 = 0x32,
.rm_imm8 = 0x83, .rm_imm8_op = 6,
.rm_imm32 = 0x81, .rm_imm32_op = 6,
.rm8_imm8 = 0x80, .rm8_imm8_op = 6,
.reg8_imm8 = -1,
.reg32_imm32 = -1,
.reg64_imm64 = -1,
};
typedef struct X64OpUnary {
uint8_t rm;
// Number to use on 'modrm.reg' when we're encoding memory expression.
// This is extension of the op code.
// SDM notes this after the opcode as /<register number>, for example
// 8F /0 -> pop, opcode = 8F, modrm.reg set to 0 (RAX)
// FF /6 -> push, opcode = FF, modrm.reg set to 6 (RSI)
uint8_t rm_op;
uint8_t reg;
uint8_t imm8;
uint8_t imm32;
} X64OpUnary;
static inline x64opunary_has_imm(const X64OpUnary op) {
return op.imm8 || op.imm32;
}
const X64OpUnary X64Op_Pop = {
.reg = 0x58,
// TODO: Cannot encode 32-bit operand size.
// NOTE: Notated as 8F /0 in SDM.
.rm = 0x8F, .rm_op = 0,
};
const X64OpUnary X64Op_Push = {
.reg = 0x50,
// NOTE: Notated as FF /6 in SDM.
.rm = 0xFF, .rm_op = 6,
.imm8 = 0x6A,
.imm32 = 0x68,
};
//
//
//
typedef struct X64Inst {
uint8_t bytes[
3 + // prefixes
3 + // opcode
1 + // mod r/m
1 + // sib
8 + // displacement (some rare instructions take 8B displacement)
8 + // immediate (some rare instructions take 8B immediate)
0
];
uint8_t count;
const char* error;
} X64Inst;
//
//
//
static inline int8_t
x64imm_get_size(uint64_t imm)
{
if (imm <= 0xff) {
return 1;
} else if (imm <= 0xffffffffull) {
return 4;
} else {
return 8;
}
}
// 'w' operand size is 64-bit
// 'r' extension of modrm.reg
// 'x' extension of sib.index
// 'b' extension of modrm.rm, sib.base or opcode reg field
static inline uint8_t
x64rex(int8_t w, int8_t r, uint8_t x, uint8_t b) {
// bits: 0100 W R X B
uint8_t wrxb = (w & 1) << 3 | (r & 1) << 2 | (x & 1) << 1 | (b & 1) << 0;
if (wrxb) {
return 0b01000000 | wrxb;
}
return 0;
}
// 'mode'
// - 00 - memory expression with no displacement
// - 01 - memory expression with 8-bit displacement
// - 10 - memory expression with 32-bit displacement
// - 11 - register
// 'reg' is reg/opcode field
// - specifies either a register number or three more bits of opcode information.
// - for exampel PUSH is FF opcode, with value 6 in this field.
// 'rm'
// - can specify a register as an operand or it can be combined with
// the mod field to encode an addressing mode. Sometimes, certain
// combinations of the mod field and the rm field are used to express
// opcode information for some instructions.
static inline uint8_t
x64modrm(X64ModRMMode mode, X64Reg reg, X64Reg rm) {
X64_ASSERT_DEBUG(mode >= 0 && mode < 4);
x64reg_check(reg);
x64reg_check(rm);
return
(mode << 6) |
(((reg - 1) & 7) << 3) |
((rm - 1) & 7);
}
static inline uint8_t
x64sib(X64Scale scale, X64Reg index, X64Reg base) {
X64_ASSERT_DEBUG(scale >= 0 && scale < 4);
x64reg_check(index);
x64reg_check(base);
return
(scale << 6) |
(((index - 1) & 7) << 3) |
((base - 1) & 7);
}
static inline uint8_t
x64op_reg(int16_t op, X64Reg reg) {
X64_ASSERT_DEBUG(op != -1);
x64reg_check(reg);
return op | ((reg - 1) & 7);
}
//
// Full instruction encoders
//
static inline uint8_t*
x64e_bytes_(uint8_t* it, uint8_t* bytes, int bytes_count) {
while (bytes_count) {
*it++ = *bytes++;
--bytes_count;
}
return it;
}
// Mem/Reg (rm_reg)
// Reg/Mem (reg_rm)
// Mem/Imm (some of rm_imm, others are encoded with x64e_modrm_)
// Instruction with memory expression operand.
static inline uint8_t*
x64e_modrm_sib_disp_(uint8_t* it, X64Size size, int opcode, X64Reg reg, X64Reg base, X64Reg index, X64Scale scale, uint64_t displacement, char** error)
{
X64_ASSERT_DEBUG(opcode != -1);
int modrm_mode = -1;
int modrm_reg = reg;
int modrm_rm = base;
bool sib = false;
int sib_scale = 0;
int sib_index = 0;
int sib_base = 0;
uint8_t rex = 0;
int8_t displacement_size = 0;
if (displacement == 0) {
displacement_size = 0;
modrm_mode = X64ModRM_Indirect;
} else if (displacement < 0x100) {
displacement_size = 1;
modrm_mode = X64ModRM_IndirectDisp8;
} else {
displacement_size = 4;
modrm_mode = X64ModRM_IndirectDisp32;
}
if (base == X64_RIP)
{
if (index != 0 || scale != 0) {
*error = "index and scale must be 0 in when base is RIP";
return NULL;
}
// Special case.
// Forcing mode to Indirect, and displacement size to 4.
modrm_mode = X64ModRM_Indirect;
modrm_rm = X64_RBP;
displacement_size = 4;
}
else if (index == 0)
{
if (scale != 0) {
X64_ERROR("scale must be set to X1");
}
// Signal no index.
sib_index = X64_RSP;
if (base == 0) {
// No base, no index, assuming absolute addressing.
sib = true;
modrm_rm = X64_RSP;
sib_base = X64_RBP;
modrm_mode = X64ModRM_Indirect;
displacement_size = 4;
} else if (base == X64_RBP || base == X64_R13) {
// RBS-base, no index.
if (modrm_mode == X64ModRM_Indirect) {
// Special case.
X64_ASSERT_DEBUG(displacement == 0);
displacement_size = 1;
modrm_mode = X64ModRM_IndirectDisp8;
}
} else if (base == X64_RSP || base == X64_R12) {
// RSP-base, no index.
// Because RSP has special meaning in modrm.rm,
// we need to force SIB here and do it through sib.base.
sib = true;
modrm_rm = X64_RSP;
sib_base = base;
} else {
// Base only, no index.
// Other-than RBP base, no SIB.
X64_ASSERT_DEBUG(sib == false);
X64_ASSERT_DEBUG(modrm_rm);
}
}
else if (index == X64_RSP)
{
// This is a special feature provided on assembler level.
// If we want to index by RSP, we can only do so by setting it as sib.base.
// That means that sib.scale has to be set to X1.
if (scale != X64_X1) {
*error = "cannot index by RSP with scale other than 1";
return NULL;
}
// Same as branch index == 0 && base == X64_RSP.
sib = true;
modrm_rm = X64_RSP;
sib_base = X64_RSP;
if (base == 0) {
sib_index = X64_RSP;
} else {
sib_index = base;
}
}
else
{
sib = true;
modrm_rm = X64_RSP;
sib_index = index;
sib_scale = scale;
sib_base = base;
if (base == 0) {
// Flag we're using no base.
sib_base = X64_RBP;
// We have to switch mode to 0b00 and force displacement_size to 4.
modrm_mode = X64ModRM_Indirect;
displacement_size = 4;
} else if (base == X64_RBP || base == X64_R13) {
// RBS-base, no index.
if (modrm_mode == X64ModRM_Indirect) {
// Special case.
X64_ASSERT_DEBUG(displacement == 0);
displacement_size = 1;
modrm_mode = X64ModRM_IndirectDisp8;
}
}
}
rex = x64rex(
size == X64_S64,
x64reg_is_int_ext(reg),
sib && x64reg_is_int_ext(sib_index),
sib
? x64reg_is_int_ext(sib_base)
: x64reg_is_int_ext(modrm_rm));
if (rex) *it++ = rex;
*it++ = opcode;
*it++ = x64modrm(modrm_mode, modrm_reg, modrm_rm);
if (sib) *it++ = x64sib(sib_scale, sib_index, sib_base);
it = x64e_bytes_(it, (uint8_t*)&displacement, displacement_size);
return it;
}
// Reg/Imm (rmX_immX)
// Reg and OpCode extension in ModRm
static inline uint8_t*
x64e_modrm_(uint8_t* it, X64Size size, int opcode, int opcode_ext, X64Reg reg)
{
X64_ASSERT_DEBUG(opcode != -1);
X64_ASSERT_DEBUG(reg != 0);
// This encodes:
// 1. OpCode
// 2. ModRm with Mode=11, Reg=opcode_ext, RM=reg
// 3. No SIB it seems.
// TODO: Test variants of this with ModRm/SIB registers.
uint8_t rex = x64rex(size == X64_S64, 0, 0, x64reg_is_int_ext(reg));
if (rex) *it++ = rex;
*it++ = opcode;
*it++ = x64modrm(X64ModRM_Direct, opcode_ext + 1, reg);
return it;
}
// Reg/Imm (regX_immX)
// Reg in OpCode (hence rex extends it via `.b`)
static inline uint8_t*
x64e_op_reg_(uint8_t* it, X64Size size, int opcode, X64Reg reg)
{
X64_ASSERT_DEBUG(opcode != -1);
uint8_t rex = x64rex(size == X64_S64, 0, 0, x64reg_is_int_ext(reg));
if (rex) *it++ = rex;
// Encode reg in opcode (bottom 3 bits).
*it++ = x64op_reg(opcode, reg);
return it;
}
//
//
//
X64Inst
x64_emit_error(const char* error)
{
X64_ASSERT_DEBUG(error);
return (X64Inst){ .error = error };
}
//
//
//
uint8_t*
x64_emit_binary_reg_reg_(uint8_t* it, X64Size size, const X64OpBinary op, X64Operand D, X64Operand S, char** error)
{
// reg_rm
// rm8_reg8 -- in case size == X64_S8
if (D.reg == 0) {
*error = "destination register cannot be none";
return 0;
}
int16_t opcode = op.reg_rm;
uint8_t rex = 0;
if (size == X64_S8) {
// ML64 seems to prefer rm8_reg8, while
// GCC prefers reg8_rm8.
#if 0
if (op.rm8_reg8) {
opcode = op.rm8_reg8;
x64o_swap(D, S);
}
#else
if (op.reg8_rm8) {
opcode = op.reg8_rm8;
}
#endif
}
X64_ASSERT_DEBUG(opcode != -1);
rex = x64rex(size == X64_S64, x64reg_is_int_ext(D.reg), 0, x64reg_is_int_ext(S.reg));
if (rex) *it++ = rex;
*it++ = opcode;
*it++ = x64modrm(X64ModRM_Direct, D.reg, S.reg);
return it;
}
uint8_t*
x64_emit_binary_reg_imm_(uint8_t* it, X64Size size, const X64OpBinary op, X64Operand D, X64Operand S, char **error)
{
// This encodes one of two op codes:
// - reg8_imm8 (or rm8_imm8)
// - reg32_imm32 (or rm_imm32)
// In case of rmX_immX variant, we encode:
// - modrm.mode == 0b11
// - modrm.reg = op.reg8_imm8_op
// - modrm.rm = D.reg
// In case of regX_immX:
// - we encode D.reg into opcode directly
// In case this is specified and required, we'll use:
// reg64_imm64
// If not defined, but required, we'll raise and error.
X64_ASSERT_DEBUG(D.kind == X64O_Reg);
X64_ASSERT_DEBUG(S.kind == X64O_Imm);
if (D.reg == 0) {
*error = "destination register cannot be none";
return 0;
}
int imm_size = x64imm_get_size(S.imm);
// (uint8_t)a -= 400
switch (size)
{
case X64_S8:
if (imm_size > 1) {
*error = "immediate value truncated to 8 bits because of size argument";
return NULL;
}
imm_size = 1;
if (op.reg8_imm8 == -1) {
it = x64e_modrm_(it, X64_S32, op.rm8_imm8, op.rm8_imm8_op, D.reg);
} else {
it = x64e_op_reg_(it, X64_S8, op.reg8_imm8, D.reg);
}
break;
case X64_S64:
if (imm_size > 4) {
// 64-bit
if (op.reg64_imm64 == -1) {
*error = "64-bit immediate value not supported with this instruction";
return NULL;
}
it = x64e_op_reg_(it, X64_S64, op.reg64_imm64, D.reg);
break;
}
// Fallthrough.
case X64_S32:
// WARNING: X64_S64 falls through here as well.
if (imm_size == 1 && op.rm_imm8 != -1) {
// We're using `size` here because we want REX in case we fallthrough
// from size == X64_S64.
it = x64e_modrm_(it, size, op.rm_imm8, op.rm_imm8_op, D.reg);
} else {
if (imm_size > 4) {
*error = "immediate value truncated to 32 bits because of size argument";
return NULL;
}
imm_size = 4;
if (size == X64_S32 && op.reg32_imm32 != -1) {
// We're not taking this branch in case the size 64 fallsthrough here.
// Otherwise we'd have to encode imm64, even if it's way smaller.
it = x64e_op_reg_(it, X64_S32, op.reg32_imm32, D.reg);
} else {
// We're using `size` here because we want REX in case we fallthrough
// from size == X64_S64.
it = x64e_modrm_(it, size, op.rm_imm32, op.rm_imm32_op, D.reg);
}
}
break;
}
return x64e_bytes_(it, (uint8_t*)&S.imm, imm_size);
}
uint8_t*
x64_emit_binary_mem_imm_(uint8_t* it, X64Size size, const X64OpBinary op, X64Operand D, X64Operand S, char** error)
{
X64_ASSERT(D.kind == X64O_Mem && S.kind == X64O_Imm);
int8_t imm_size = x64imm_get_size(S.imm);
int opcode = -1;
int opcode_ext = 0;
switch (size)
{
case X64_S8:
if (imm_size > 1) {
*error = "immediate value truncated to 8 bits because of size argument";
return NULL;
}
imm_size = 1;
opcode = op.rm8_imm8;
opcode_ext = op.rm8_imm8_op;
break;
case X64_S64:
if (imm_size > 4) {
*error = "operation mem64, imm64 is not supported";
return NULL;
}
// Fallthrough as we'll use rm_imm8 or rm_imm32 with rex (produced by x64e used).
case X64_S32:
// TODO: Check whether SDefault works here as it's supposed to.
if (imm_size == 1 && op.rm_imm8 != -1) {
opcode = op.rm_imm8;
opcode_ext = op.rm_imm8_op;
} else {
if (imm_size > 4) {
*error = "immediate value truncated to 32 bits because of size argument";
return NULL;
}
opcode = op.rm_imm32;
opcode_ext = op.rm_imm32_op;
imm_size = 4;
}
break;
}
it = x64e_modrm_sib_disp_(it,
size,
opcode,
opcode_ext + 1,
D.mem.base,
D.mem.index,
D.mem.scale,
D.mem.displacement,
error);
return x64e_bytes_(it, (uint8_t*)&S.imm, imm_size);
}
uint8_t*
x64_emit_binary_reg_mem_(uint8_t* it, X64Size size, const X64OpBinary op, X64Operand D, X64Operand S, char** error)
{
int opcode = 0;
switch (x64o_pair(D.kind, S.kind))
{
case x64o_pair(X64O_Reg, X64O_Mem):
// All good.
opcode = size == X64_S8
? op.reg8_rm8
: op.reg_rm;
break;
case x64o_pair(X64O_Mem, X64O_Reg):
x64o_swap(D, S);
opcode = size == X64_S8
? op.rm8_reg8
: op.rm_reg;
break;
default:
X64_ERROR("invalid operands");
return it;
}
if (opcode == -1) {
X64_ERROR("opcode is not defined");
return it;
}
return x64e_modrm_sib_disp_(it, size, opcode, D.reg, S.mem.base, S.mem.index, S.mem.scale, S.mem.displacement, error);
}
X64Inst
x64_emit_binary(X64Size size, const X64OpBinary op, X64Operand D, X64Operand S)
{
X64Inst inst = {0};
uint8_t* it = inst.bytes;
char* error = "uknown error";
switch (x64o_pair(D.kind, S.kind))
{
case x64o_pair(X64O_Reg, X64O_Reg):
it = x64_emit_binary_reg_reg_(it, size, op, D, S, &error);
break;
case x64o_pair(X64O_Reg, X64O_Imm):
it = x64_emit_binary_reg_imm_(it, size, op, D, S, &error);
break;
case x64o_pair(X64O_Mem, X64O_Reg):
case x64o_pair(X64O_Reg, X64O_Mem):
it = x64_emit_binary_reg_mem_(it, size, op, D, S, &error);
break;
case x64o_pair(X64O_Mem, X64O_Imm):
it = x64_emit_binary_mem_imm_(it, size, op, D, S, &error);
break;
default:
X64_ERROR("unexpected arguments");
}
if (it == 0) {
return x64_emit_error(error);
}
inst.count = it - inst.bytes;
return inst;
}
X64Inst x64_emit_unary(X64OpUnary op, X64Operand D)
{
X64Inst inst = {0};
uint8_t* it = inst.bytes;
char* error = "unknown error";
uint8_t rex = 0;
switch (D.kind)
{
case X64O_Reg:
if (D.reg == 0) {
return x64_emit_error("invalid register");
}
rex = x64rex(0, 0, 0, x64reg_is_int_ext(D.reg));
if (rex) *it++ = rex;
*it++ = op.reg | (D.reg - 1) & 7;
break;
case X64O_Imm: {
if (!x64opunary_has_imm(op)) {
return x64_emit_error("immediate values are not supported with this operation");
}
if (op.imm8 && D.imm <= 0xFF) {
*it++ = op.imm8;
it = x64e_bytes_(it, (uint8_t*)&D.imm, 1);
} else if (op.imm32 && D.imm <= 0xFFFFffff) {
*it++ = op.imm32;
it = x64e_bytes_(it, (uint8_t*)&D.imm, 4);
} else {
return x64_emit_error("32-bit immediate is maximum");
}
break;
}
case X64O_Mem: {
it = x64e_modrm_sib_disp_(it, X64_SDefault, op.rm, op.rm_op + 1, D.mem.base, D.mem.index, D.mem.scale, D.mem.displacement, &error);
if (it == 0) {
return x64_emit_error(error);
}
break;
}
default:
return x64_emit_error("invalid operand");
}
inst.count = it - inst.bytes;
return inst;
}
//
//
//
static inline X64Inst x64_mov(X64Size size, X64Operand D, X64Operand S) { return x64_emit_binary(size, X64Op_Mov, D, S); }
static inline X64Inst x64_sub(X64Size size, X64Operand D, X64Operand S) { return x64_emit_binary(size, X64Op_Sub, D, S); }
static inline X64Inst x64_add(X64Size size, X64Operand D, X64Operand S) { return x64_emit_binary(size, X64Op_Add, D, S); }
static inline X64Inst x64_and(X64Size size, X64Operand D, X64Operand S) { return x64_emit_binary(size, X64Op_And, D, S); }
static inline X64Inst x64_or(X64Size size, X64Operand D, X64Operand S) { return x64_emit_binary(size, X64Op_Or, D, S); }
static inline X64Inst x64_xor(X64Size size, X64Operand D, X64Operand S) { return x64_emit_binary(size, X64Op_Xor, D, S); }
static inline X64Inst x64_pop(X64Operand D) { return x64_emit_unary(X64Op_Pop, D); }
static inline X64Inst x64_push(X64Operand S) { return x64_emit_unary(X64Op_Push, S); }
// TODO: What about '0xCB RET Far return to calling procedure.'?
static inline X64Inst x64_ret() { return (X64Inst){ .bytes = { 0xC3 }, .count = 1 }; }
// TODO: `lea`
// TODO: `not`
// TODO: `shl`
// TODO: `shr`
// TODO: `sal`
// TODO: `sar`
// TODO: `int3`
// TODO: `call reg`
// TODO: `call imm64`
// TODO: `imul` (result in rdx and rax)
// - https://youtu.be/ieuUHIWaIqM?list=PL0C5C980A28FEE68D&t=340
// - there's single operand, double operand and tripple operand versions
// TODO: `idiv`