forked from fatemehtd/Echo-SyncNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
executable file
·603 lines (489 loc) · 21.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from config import CONFIG
import json
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt # pylint: disable=g-import-not-at-top
import io
import math
import os
import time
from absl import flags
from absl import logging
from easydict import EasyDict
import matplotlib
matplotlib.use('Agg')
FLAGS = flags.FLAGS
def visualize_batch(data, global_step, batch_size, num_steps):
"""Visualizes a batch."""
frames = data['frames']
frames_list = tf.unstack(frames, num=num_steps, axis=1)
frames_summaries = tf.concat(frames_list, axis=2)
batch_list = tf.split(frames_summaries, batch_size, axis=0)
batch_summaries = tf.concat(batch_list, axis=1)
tf.summary.image('train_batch', batch_summaries, step=global_step)
def visualize_nearest_neighbours(model, data, global_step, batch_size,
num_steps, num_frames_per_step, split):
"""Visualize nearest neighbours in embedding space."""
# Set learning_phase to False to use models in inference mode.
tf.keras.backend.set_learning_phase(0)
cnn = model['cnn']
emb = model['emb']
if 'tcn' in CONFIG.TRAINING_ALGO:
cnn_feats = get_cnn_feats(
cnn, data, training=False, num_steps=2 * num_steps)
emb_feats = emb(cnn_feats, 2 * num_steps)
emb_feats = tf.stack(
tf.split(emb_feats, 2 * num_steps, axis=0)[::2], axis=1)
else:
cnn_feats = get_cnn_feats(cnn, data, training=False)
emb_feats = emb(cnn_feats, num_steps)
emb_feats = tf.stack(tf.split(emb_feats, num_steps, axis=0), axis=1)
query_feats = emb_feats[0]
if CONFIG.OPTICALFLOW:
frames = data['video_frames']
else:
frames = data['frames']
image_list = tf.unstack(frames, num=batch_size, axis=0)
if 'tcn' in CONFIG.TRAINING_ALGO:
im_list = [image_list[0]
[num_frames_per_step - 1::num_frames_per_step][::2]]
else:
im_list = [image_list[0][num_frames_per_step - 1::num_frames_per_step]]
sim_matrix = np.zeros(
(batch_size-1, num_steps, num_steps), dtype=np.float32)
for i in range(1, batch_size):
candidate_feats = emb_feats[i]
if 'tcn' in CONFIG.TRAINING_ALGO:
img_list = tf.unstack(image_list[i], num=2 * num_steps * num_frames_per_step,
axis=0)[num_frames_per_step - 1::num_frames_per_step][::2]
else:
img_list = tf.unstack(image_list[i], num=num_steps * num_frames_per_step,
axis=0)[num_frames_per_step - 1::num_frames_per_step]
nn_img_list = []
for j in range(num_steps):
curr_query_feats = tf.tile(query_feats[j:j+1], [num_steps, 1])
mean_squared_distance = tf.reduce_mean(
tf.math.squared_difference(curr_query_feats, candidate_feats), axis=1)
sim_matrix[i-1, j] = softmax(-1.0 * mean_squared_distance)
nn_img_list.append(img_list[tf.argmin(mean_squared_distance)])
nn_img = tf.stack(nn_img_list, axis=0)
im_list.append(nn_img)
def vstack(im):
return tf.concat(tf.unstack(im, num=num_steps), axis=1)
summary_im = tf.expand_dims(tf.concat([vstack(im) for im in im_list],
axis=0), axis=0)
tf.summary.image('%s/nn' % split, summary_im, step=global_step)
# Convert sim_matrix to float32 as summary_image doesn't take float64
sim_matrix = sim_matrix.astype(np.float32)
tf.summary.image('%s/similarity_matrix' % split,
np.expand_dims(sim_matrix, axis=3), step=global_step)
def softmax(w, t=1.0):
e = np.exp(np.array(w) / t)
dist = e / np.sum(e)
return dist
def random_choice_noreplace(m, n, axis=-1):
# Generate m random permuations of range (0, n)
# NumPy version: np.random.rand(m,n).argsort(axis=axis)
return tf.cast(tf.argsort(tf.random.uniform((m, n)), axis=axis), tf.int64)
def gen_cycles(num_cycles, batch_size, cycle_len):
"""Generate cycles for alignment."""
random_cycles = random_choice_noreplace(
num_cycles, batch_size)[:, :cycle_len]
return random_cycles
def get_warmup_lr(lr, global_step, lr_params):
"""Returns learning rate during warm up phase."""
if lr_params.NUM_WARMUP_STEPS > 0:
global_steps_int = tf.cast(global_step, tf.int32)
warmup_steps_int = tf.constant(
lr_params.NUM_WARMUP_STEPS, dtype=tf.int32)
global_steps_float = tf.cast(global_steps_int, tf.float32)
warmup_steps_float = tf.cast(warmup_steps_int, tf.float32)
warmup_percent_done = global_steps_float / warmup_steps_float
warmup_lr = lr_params.INITIAL_LR * warmup_percent_done
is_warmup = tf.cast(global_steps_int < warmup_steps_int, tf.float32)
lr = (1.0 - is_warmup) * lr + is_warmup * warmup_lr
return lr
# Minimally adapted from Tensorflow object_detection code.
def manual_stepping(global_step, boundaries, rates):
boundaries = [0] + boundaries
num_boundaries = len(boundaries)
rate_index = tf.reduce_max(
tf.where(
tf.greater_equal(global_step, boundaries),
list(range(num_boundaries)), [0] * num_boundaries))
return tf.reduce_sum(rates * tf.one_hot(rate_index, depth=num_boundaries))
def get_lr_fn(optimizer_config):
"""Returns function that provides current learning rate based on config.
NOTE: This returns a function as in Eager we need to call assign to update
the learning rate.
Args:
optimizer_config: EasyDict, contains params required to initialize the
learning rate and the learning rate decay function.
Returns:
lr_fn: function, this can be called to return the current learning rate
based on the provided config.
Raises:
ValueError: in case invalid params have been passed in the config.
"""
lr_params = optimizer_config.LR
# pylint: disable=g-long-lambda
if lr_params.DECAY_TYPE == 'exp_decay':
def lr_fn(lr, global_step): return tf.train.exponential_decay(
lr,
global_step,
lr_params.EXP_DECAY_STEPS,
lr_params.EXP_DECAY_RATE,
staircase=True)()
elif lr_params.DECAY_TYPE == 'manual':
lr_step_boundaries = [int(x)
for x in lr_params.MANUAL_LR_STEP_BOUNDARIES]
f = lr_params.MANUAL_LR_DECAY_RATE
learning_rate_sequence = [(lr_params.INITIAL_LR) * f**p
for p in range(len(lr_step_boundaries) + 1)]
def lr_fn(lr, global_step): return manual_stepping(
global_step, lr_step_boundaries, learning_rate_sequence)
elif lr_params.DECAY_TYPE == 'fixed':
def lr_fn(lr, global_step): return lr_params.INITIAL_LR
elif lr_params.DECAY_TYPE == 'poly':
def lr_fn(lr, global_step): return tf.train.polynomial_decay(
lr,
global_step,
CONFIG.TRAIN.MAX_ITERS,
end_learning_rate=0.0,
power=1.0,
cycle=False)
else:
raise ValueError('Learning rate decay type %s not supported. Only support'
'the following decay types: fixed, exp_decay, manual,'
'and poly.')
return (lambda lr, global_step: get_warmup_lr(lr_fn(lr, global_step),
global_step, lr_params))
def get_optimizer(optimizer_config, learning_rate):
"""Returns optimizer based on config and learning rate."""
if optimizer_config.TYPE == 'AdamOptimizer':
opt = tf.keras.optimizers.Adam(learning_rate=learning_rate)
elif optimizer_config.TYPE == 'MomentumOptimizer':
opt = tf.keras.optimizers.SGD(
learning_rate=learning_rate, momentum=0.9)
else:
raise ValueError('Optimizer %s not supported. Only support the following'
'optimizers: AdamOptimizer, MomentumOptimizer .')
return opt
def get_lr_opt_global_step():
"""Intializes learning rate, optimizer and global step."""
optimizer = get_optimizer(CONFIG.OPTIMIZER, CONFIG.OPTIMIZER.LR.INITIAL_LR)
global_step = optimizer.iterations
learning_rate = optimizer.learning_rate
return learning_rate, optimizer, global_step
def create_ckpt(logdir, restore=False, **ckpt_objects):
# Since model is a dict we can insert multiple modular networks in this dict.
checkpoint = tf.train.Checkpoint(**ckpt_objects)
ckpt_manager = tf.train.CheckpointManager(
checkpoint,
directory=logdir,
max_to_keep=10,
keep_checkpoint_every_n_hours=1)
status = checkpoint.restore(
ckpt_manager.latest_checkpoint) if restore else -1
return ckpt_manager, status, checkpoint
def restore_ckpt(logdir, **ckpt_objects):
"""Create and restore checkpoint (if one exists on the path)."""
# Instantiate checkpoint and restore from any pre-existing checkpoint.
# Since model is a dict we can insert multiple modular networks in this dict.
checkpoint = tf.train.Checkpoint(**ckpt_objects)
ckpt_manager = tf.train.CheckpointManager(
checkpoint,
directory=logdir,
max_to_keep=10,
keep_checkpoint_every_n_hours=1)
status = checkpoint.restore(ckpt_manager.latest_checkpoint)
return ckpt_manager, status, checkpoint
def to_dict(config):
if isinstance(config, list):
return [to_dict(c) for c in config]
elif isinstance(config, EasyDict):
return dict([(k, to_dict(v)) for k, v in config.items()])
else:
return config
def setup_train_dir(logdir, overwrite=False, force_train=True):
"""Setups directory for training."""
tf.io.gfile.makedirs(logdir)
config_path = os.path.join(logdir, 'config.json')
if not os.path.exists(config_path) or overwrite:
logging.info(
'Using the existing passed in config as no config.json file exists in '
'%s', logdir)
with tf.io.gfile.GFile(config_path, 'w') as config_file:
config = dict([(k, to_dict(v)) for k, v in CONFIG.items()])
json.dump(config, config_file, sort_keys=True, indent=4)
else:
logging.info(
'Using config from config.json that exists in %s.', logdir)
with tf.io.gfile.GFile(config_path, 'r') as config_file:
config_dict = json.load(config_file)
CONFIG.update(config_dict)
train_logs_dir = os.path.join(logdir, 'train.logs')
if os.path.exists(train_logs_dir) and not force_train:
raise ValueError('You might be overwriting a directory that already '
'has train_logs. Please provide a new logdir name in '
'config or pass --force_train while launching script.')
tf.io.gfile.makedirs(train_logs_dir)
def setup_eval_dir(logdir, config_timeout_seconds=1):
"""Setups directory for evaluation."""
tf.io.gfile.makedirs(logdir)
tf.io.gfile.makedirs(os.path.join(logdir, 'eval_logs'))
config_path = os.path.join(logdir, 'config.json')
while not tf.io.gfile.exists(config_path):
logging.info('Waiting for config to exist. Going to sleep '
' %s for secs.', config_timeout_seconds)
time.sleep(config_timeout_seconds)
while True:
with tf.io.gfile.GFile(config_path, 'r') as config_file:
config_dict = json.load(config_file)
if config_dict is None:
time.sleep(config_timeout_seconds)
else:
break
CONFIG.update(config_dict)
def get_data(iterator):
"""Return a data dict which contains all the requested sequences."""
data = iterator.get_next()
return data, data['chosen_steps'], data['seq_lens']
@tf.function
def get_cnn_feats(cnn, data, training, num_steps=None):
"""Passes data through base CNN."""
if num_steps is None:
if training:
num_steps = CONFIG.TRAIN.NUM_FRAMES * CONFIG.DATA.NUM_STEPS
else:
num_steps = CONFIG.EVAL.NUM_FRAMES * CONFIG.DATA.NUM_STEPS
cnn.num_steps = num_steps
cnn_feats = cnn(data['frames'])
return cnn_feats
def get_context_steps(step):
num_steps = CONFIG.DATA.NUM_STEPS
stride = CONFIG.DATA.FRAME_STRIDE
# We don't want to see the future.
steps = np.arange(step - (num_steps - 1) * stride, step + stride, stride)
return steps
def get_indices(curr_idx, num_steps, seq_len):
steps = range(curr_idx, curr_idx + num_steps)
single_steps = np.concatenate([get_context_steps(step) for step in steps])
single_steps = np.concatenate(np.array(list(map(get_context_steps,
np.arange(curr_idx, curr_idx + num_steps)))))
single_steps = np.maximum(0, single_steps)
single_steps = np.minimum(seq_len, single_steps)
return single_steps
def get_embeddings_dataset(model, iterator, frames_per_batch,
keep_data=False, optical_flow=False, keep_labels=True,
max_embs=None, callbacks=[]):
"""Get embeddings from a one epoch iterator."""
keep_labels = keep_labels and CONFIG.DATA.FRAME_LABELS
num_frames_per_step = CONFIG.DATA.NUM_STEPS
cnn = model['cnn']
emb = model['emb']
embs_list = []
labels_list = []
steps_list = []
seq_lens_list = []
names_list = []
seq_labels_list = []
if keep_data:
frames_list = []
if optical_flow:
frame_original_list = []
n = 0
def cond(n):
if max_embs is None:
return True
else:
return n < max_embs
# Make Recurrent Layers stateful, set batch size.
# We do this as we are embedding the whole sequence and that can take
# more than one batch to be passed and we don't want to automatically
# reset hidden states after each batch.
if CONFIG.MODEL.EMBEDDER_TYPE == 'convgru':
for gru_layer in emb.gru_layers:
gru_layer.stateful = True
gru_layer.input_spec[0].shape = [1, ]
while cond(n):
try:
print(n)
embs = []
labels = []
steps = []
seq_lens = []
names = []
seq_labels = []
if keep_data:
frames = []
if optical_flow:
frame_original = []
# Reset GRU states for each video.
if CONFIG.MODEL.EMBEDDER_TYPE == 'convgru':
for gru_layer in emb.gru_layers:
gru_layer.reset_states()
data, chosen_steps, seq_len = get_data(iterator)
seq_len = seq_len.numpy()[0]
num_batches = int(math.ceil(float(seq_len)/frames_per_batch))
for i in range(num_batches):
if (i + 1) * frames_per_batch > seq_len:
num_steps = seq_len - i * frames_per_batch
else:
num_steps = frames_per_batch
curr_idx = i * frames_per_batch
curr_data = {}
for k, v in data.items():
# Need to do this as some modalities might not exist.
if len(v.shape) > 1 and v.shape[1] != 0:
idxes = get_indices(curr_idx, num_steps, seq_len)
curr_data[k] = tf.gather(v, idxes, axis=1)
else:
curr_data[k] = v
cnn_feats = get_cnn_feats(cnn, curr_data,
num_steps=num_frames_per_step * num_steps,
training=False)
emb_feats = emb(cnn_feats, num_steps)
logging.debug('On sequence number %d, frames embedded %d', n,
curr_idx + num_steps)
# np.save(tf.io.gfile.GFile('/air/team/saman/test_weights_old.npy', 'w'), cnn.weights[0].numpy())
# np.save(tf.io.gfile.GFile('/air/team/saman/test_batch_old.npy', 'w'), curr_data["frames"])
# np.save(tf.io.gfile.GFile('/air/team/saman/test_cnn_old.npy', 'w'), cnn_feats.numpy())
# np.save(tf.io.gfile.GFile('/air/team/saman/test_emb_old.npy', 'w'), emb_feats.numpy())
embs.append(emb_feats.numpy())
for f in callbacks:
f(np.concatenate(embs), data, chosen_steps, seq_len)
steps.append(chosen_steps.numpy()[0])
seq_lens.append(seq_len * [seq_len])
all_labels = data['frame_labels'].numpy()[0]
name = data['name'].numpy()[0]
names.append(seq_len * [name])
seq_label = data['seq_labels'].numpy()[0]
seq_labels.append(seq_len * [seq_label])
labels.append(all_labels)
embs = np.concatenate(embs, axis=0)
labels = np.concatenate(labels, axis=0)
steps = np.concatenate(steps, axis=0)
seq_lens = np.concatenate(seq_lens, axis=0)
names = np.concatenate(names, axis=0)
seq_labels = np.concatenate(seq_labels, axis=0)
if keep_data:
frames.append(data['frames'].numpy()[0])
frames = np.concatenate(frames, axis=0)
if optical_flow:
frame_original.append(data['video_frames'].numpy()[0])
frame_original = np.concatenate(frame_original, axis=0)
if keep_labels:
labels = labels[~np.isnan(embs).any(axis=1)]
assert len(embs) == len(labels)
seq_labels = seq_labels[~np.isnan(embs).any(axis=1)]
names = names[~np.isnan(embs).any(axis=1)]
seq_lens = seq_lens[~np.isnan(embs).any(axis=1)]
steps = steps[~np.isnan(embs).any(axis=1)]
if keep_data:
frames = frames[~np.isnan(embs).any(axis=1)]
if optical_flow:
frame_original = frame_original[~np.isnan(embs).any(axis=1)]
embs = embs[~np.isnan(embs).any(axis=1)]
assert len(embs) == len(seq_lens)
assert len(embs) == len(steps)
assert len(names) == len(steps)
embs_list.append(embs)
if keep_labels:
labels_list.append(labels)
seq_labels_list.append(seq_labels)
steps_list.append(steps)
seq_lens_list.append(seq_lens)
names_list.append(names)
if keep_data:
frames_list.append(frames)
if optical_flow:
frame_original_list.append(frame_original)
n += 1
except tf.errors.OutOfRangeError:
logging.info('Finished embedding the dataset.')
break
dataset = {'embs': embs_list,
'seq_lens': seq_lens_list,
'steps': steps_list,
'names': names_list,
'seq_labels': seq_labels_list}
if keep_data:
dataset['frames'] = frames_list
if optical_flow:
dataset['frames_original'] = frame_original_list
if keep_labels:
dataset['labels'] = labels_list
# Reset statefulness to recurrent layers for other evaluation tasks.
if CONFIG.MODEL.EMBEDDER_TYPE == 'convgru':
for gru_layer in emb.gru_layers:
gru_layer.stateful = False
return dataset
def gen_plot(x, y):
"""Create a pyplot, save to buffer and return TB compatible image."""
plt.figure()
plt.plot(x, y)
plt.title('Val Accuracy')
plt.ylim(0, 1)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
# Convert PNG buffer to TF image
image = tf.image.decode_png(buf.getvalue(), channels=4)
# Add the batch dimension
image = tf.expand_dims(image, 0)
return image
class Stopwatch(object):
"""Simple timer for measuring elapsed time."""
def __init__(self):
self.reset()
def elapsed(self):
return time.time() - self.time
def done(self, target_interval):
return self.elapsed() >= target_interval
def reset(self):
self.time = time.time()
def set_learning_phase(f):
"""Sets the correct learning phase before calling function f."""
def wrapper(*args, **kwargs):
"""Calls the function f after setting proper learning phase."""
if 'training' not in kwargs:
raise ValueError('Function called with set_learning_phase decorator which'
' does not have training argument.')
training = kwargs['training']
if training:
# Set learning_phase to True to use models in training mode.
tf.keras.backend.set_learning_phase(1)
else:
# Set learning_phase to False to use models in inference mode.
tf.keras.backend.set_learning_phase(0)
return f(*args, **kwargs)
return wrapper
def load_config(config_path):
config = None
if os.path.exists(config_path):
with open(config_path) as f:
config = json.load(f)
assert config is not None, "config file is not provided or is corrupted"
return config
def prepare_gpu(ind=-1):
ind = int(ind)
GPUS = tf.config.experimental.list_physical_devices('GPU')
if GPUS:
if ind > -1:
tf.config.experimental.set_visible_devices(GPUS[ind], 'GPU')
try:
# Currently, memory growth needs to be the same across GPUs
for gpu in GPUS:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
logging.info([len(GPUS), "Physical GPUs,", len(logical_gpus),
"Logical GPUs"])
except RuntimeError as e:
# Memory growth must be set before GPUs have been initialized
logging.info(e)
os.environ["CUDA_VISIBLE_DEVICES"] = str(ind)