forked from splicebox/PsiCLASS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgamma.cpp
201 lines (184 loc) · 5.19 KB
/
gamma.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#include "gamma.hpp"
/** The digamma function in long double precision.
* @param x the real value of the argument
* @return the value of the digamma (psi) function at that point
* @author Richard J. Mathar
* @since 2005-11-24
*/
long double digammal(long double x)
{
/* force into the interval 1..3 */
if( x < 0.0L )
return digammal(1.0L-x)+M_PIl/tanl(M_PIl*(1.0L-x)) ; /* reflection formula */
else if( x < 1.0L )
return digammal(1.0L+x)-1.0L/x ;
else if ( x == 1.0L)
return -M_GAMMAl ;
else if ( x == 2.0L)
return 1.0L-M_GAMMAl ;
else if ( x == 3.0L)
return 1.5L-M_GAMMAl ;
else if ( x > 3.0L)
/* duplication formula */
return 0.5L*(digammal(x/2.0L)+digammal((x+1.0L)/2.0L))+M_LN2l ;
else
{
/* Just for your information, the following lines contain
* the Maple source code to re-generate the table that is
* eventually becoming the Kncoe[] array below
* interface(prettyprint=0) :
* Digits := 63 :
* r := 0 :
*
* for l from 1 to 60 do
* d := binomial(-1/2,l) :
* r := r+d*(-1)^l*(Zeta(2*l+1) -1) ;
* evalf(r) ;
* print(%,evalf(1+Psi(1)-r)) ;
*o d :
*
* for N from 1 to 28 do
* r := 0 :
* n := N-1 :
*
* for l from iquo(n+3,2) to 70 do
* d := 0 :
* for s from 0 to n+1 do
* d := d+(-1)^s*binomial(n+1,s)*binomial((s-1)/2,l) :
* od :
* if 2*l-n > 1 then
* r := r+d*(-1)^l*(Zeta(2*l-n) -1) :
* fi :
* od :
* print(evalf((-1)^n*2*r)) ;
*od :
*quit :
*/
static long double Kncoe[] = { .30459198558715155634315638246624251L,
.72037977439182833573548891941219706L, -.12454959243861367729528855995001087L,
.27769457331927827002810119567456810e-1L, -.67762371439822456447373550186163070e-2L,
.17238755142247705209823876688592170e-2L, -.44817699064252933515310345718960928e-3L,
.11793660000155572716272710617753373e-3L, -.31253894280980134452125172274246963e-4L,
.83173997012173283398932708991137488e-5L, -.22191427643780045431149221890172210e-5L,
.59302266729329346291029599913617915e-6L, -.15863051191470655433559920279603632e-6L,
.42459203983193603241777510648681429e-7L, -.11369129616951114238848106591780146e-7L,
.304502217295931698401459168423403510e-8L, -.81568455080753152802915013641723686e-9L,
.21852324749975455125936715817306383e-9L, -.58546491441689515680751900276454407e-10L,
.15686348450871204869813586459513648e-10L, -.42029496273143231373796179302482033e-11L,
.11261435719264907097227520956710754e-11L, -.30174353636860279765375177200637590e-12L,
.80850955256389526647406571868193768e-13L, -.21663779809421233144009565199997351e-13L,
.58047634271339391495076374966835526e-14L, -.15553767189204733561108869588173845e-14L,
.41676108598040807753707828039353330e-15L, -.11167065064221317094734023242188463e-15L } ;
register long double Tn_1 = 1.0L ; /* T_{n-1}(x), started at n=1 */
register long double Tn = x-2.0L ; /* T_{n}(x) , started at n=1 */
register long double resul = Kncoe[0] + Kncoe[1]*Tn ;
x -= 2.0L ;
int n ;
for( n = 2 ; n < sizeof(Kncoe)/sizeof(long double) ;n++)
{
const long double Tn1 = 2.0L * x * Tn - Tn_1 ; /* Chebyshev recursion, Eq. 22.7.4 Abramowitz-Stegun */
resul += Kncoe[n]*Tn1 ;
Tn_1 = Tn ;
Tn = Tn1 ;
}
return resul ;
}
}
double trigamma ( double x, int *ifault )
//****************************************************************************
// purpose:
//
// trigamma calculates trigamma(x) = d**2 log(gamma(x)) / dx**2
//
// licensing:
//
// this code is distributed under the gnu lgpl license.
//
// modified:
//
// 19 january 2008
//
// author:
//
// original fortran77 version by be schneider.
// c++ version by john burkardt.
//
// reference:
//
// be schneider,
// algorithm as 121:
// trigamma function,
// applied statistics,
// volume 27, number 1, pages 97-99, 1978.
//
// parameters:
//
// input, double x, the argument of the trigamma function.
// 0 < x.
//
// output, int *ifault, error flag.
// 0, no error.
// 1, x <= 0.
//
// output, double trigamma, the value of the trigamma function at x.
//
{
double a = 0.0001;
double b = 5.0;
double b2 = 0.1666666667;
double b4 = -0.03333333333;
double b6 = 0.02380952381;
double b8 = -0.03333333333;
double value;
double y;
double z;
//
// check the input.
//
if ( x <= 0.0 )
{
*ifault = 1;
value = 0.0;
return value;
}
*ifault = 0;
z = x;
//
// use small value approximation if x <= a.
//
if ( x <= a )
{
value = 1.0 / x / x;
return value;
}
//
// increase argument to ( x + i ) >= b.
//
value = 0.0;
while ( z < b )
{
value = value + 1.0 / z / z;
z = z + 1.0;
}
//
// apply asymptotic formula if argument is b or greater.
//
y = 1.0 / z / z;
value = value + 0.5 *
y + ( 1.0 + y * ( b2+ y * ( b4 + y * ( b6+ y * b8 )))) / z;
return value;
}
double LogGammaDensity( double x, double k, double theta )
{
return -k * log( theta ) + ( k - 1 ) * log( x ) - x / theta - lgamma( k ) ;
}
double MixtureGammaAssignment( double x, double pi, double* k, double *theta )
{
if ( pi == 1 )
return 0 ;
else if ( pi == 0 )
return 1 ;
double lf0 = LogGammaDensity( x, k[0], theta[0] ) ;
double lf1 = LogGammaDensity( x, k[1], theta[1] ) ;
return (double)1.0 / ( 1.0 + exp( lf1 + log( 1 - pi ) - lf0 - log( pi ) ) ) ;
}