-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
73 lines (59 loc) · 2.25 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#!/usr/bin/env python3
# coding=utf-8
# Autor: Marius Iustin Grossu xgross10
# Detection of Anomalous Behavior of Visitors in Museum Exhibitions
# This is the demo module of the application
import numpy as np
import cv2
from detector import init_net_yolov7, draw_bounding_box_on_person, get_output_layers
net = init_net_yolov7()
def demo_run(file):
"""Demonstrate the capabilties of the application
Keyword arguments:
file -- input file caintaining the video to demonstrate the application
"""
video = cv2.VideoCapture(file)
while video.isOpened():
ret, frame = video.read()
if not ret:
print("Can't receive frame (stream end?). Existing ...")
break
#gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
blob = cv2.dnn.blobFromImage(frame, 1/255.0, (640,640), swapRB=True, crop=False)
net.setInput(blob)
outs = net.forward(get_output_layers(net))
class_ids = []
confidences = []
boxes = []
Width = frame.shape[1]
Height = frame.shape[0]
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.1:
center_x = int(detection[0] * Width)
center_y = int(detection[1] * Height)
w = int(detection[2] * Width)
h = int(detection[3] * Height)
x = center_x - w / 2
y = center_y - h / 2
class_ids.append(class_id)
confidences.append(float(confidence))
boxes.append([x, y, w, h])
indices = cv2.dnn.NMSBoxes(boxes, confidences, 0.1, 0.1)
for i in indices:
box = boxes[i]
x = box[0]
y = box[1]
w = box[2]
h = box[3]
draw_bounding_box_on_person(frame, class_ids[i], round(x), round(y), round(x+w), round(y+h))
# Display the resulting frame
cv2.imshow('frame', frame)
if cv2.waitKey(1) == ord('q'):
break
# When everything done, release the capture
video.release()
cv2.destroyAllWindows()