-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsta.py
192 lines (172 loc) · 6.84 KB
/
sta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from __future__ import absolute_import
from __future__ import with_statement
from __future__ import division
from __future__ import unicode_literals
from __future__ import print_function
from numpy import *
import numpy as np
from matplotlib.pyplot import *
import matplotlib.pyplot as plt
from scipy.io import loadmat
import scipy.optimize as opt
def load_sta_stimulus(filename, N=64):
swn = loadmat(filename)['pixels_allframes']
swn = reshape(swn,(shape(swn)[0],N,N))
return swn - mean(swn,axis=(1,2))[:,None,None]
def load_sta_triggers(filename, duration, ntrials = 9):
trig_t = loadmat(filename, squeeze_me=True)
ntrig = trig_t['timeStampMatrix'].shape[0]
assert ntrig/ntrials is not ntrig//ntrials, 'Number of stimuli is not multiple of trials'
dt = ntrig//ntrials
trigs = trig_t['timeStampMatrix']
block_starts = np.zeros(ntrials)
block_stops = np.zeros(ntrials)
block_lens = np.zeros(ntrials)
for i in range(ntrials):
block_starts[i] = trigs[i*dt]
block_stops[i] = trigs[(i+1)*dt-1]
block_lens[i] = np.median(np.diff(trigs[i*dt:(i+1)*dt]))
#print('trigs shape',trigs.shape)
# Estimate duration of stimuli
frame_len = np.median(block_lens)
print('frame_len',frame_len)
# print('In seconds',frame_len/Fs)
stimindex = np.zeros((duration,),'int')*NaN
i = 0
for j in range(len(trigs)-1):
stimindex[trigs[j]:trigs[j+1]]=i
i+=1
return stimindex, block_starts, block_stops
def get_loc(f, unit):
return f['centres'].value[unit][:2]
def get_spikes(f, unit):
return f['times'][f['cluster_id'][:] == unit]
def compute_sta_slow(f, unit, wn, triggers, window=(-353,4237,58), radius=15):
stimindex, block_starts, block_stops = triggers
nspace = 2*radius+1
sc,sr = get_loc(f, unit)
spikes = get_spikes(f, unit)
STA = []
for delay in range(window[0],window[1],window[2]):
spikest = np.copy(spikes).astype(int)-delay
spikest = np.concatenate([spikest[(spikest>=a)&(spikest<b)] for (a,b) in zip(block_starts,block_stops)])
stiminds = int32(stimindex[spikest])
frames = np.zeros((stiminds.shape[0], nspace, nspace))
for i in arange(-radius,radius+1): # r
for j in arange(-radius,radius+1): # c
r = int(round(i+sr))
c = int(round(j+sc))
if r<0 or c<0 or r>=64 or c >=64: continue
if sqrt(i*i+j*j)>radius: continue
frames[:,i,j] = wn[stiminds,r,c]
STA.append(fft.fftshift(np.mean(frames,0)))
return np.array(STA)
def compute_sta(f, unit, wn, triggers, window=(-353,4237,58), radius=15):
stimindex, block_starts, block_stops = triggers
nspace = 2*radius+1
sc,sr = get_loc(f, unit)
spikes = get_spikes(f, unit)
N = wn.shape[1]
x, y = np.ogrid[0:N, 0:N]
x = x - int(np.round(sc))
y = y - int(np.round(sr))
ind = np.sqrt(1. * x * x + 1. * y * y) <= radius
inds = np.where(np.sqrt(1. * x * x + 1. * y * y) <= radius)
x, y = np.ogrid[0:nspace, 0:nspace]
x = x - int(nspace/2)
y = y - int(nspace/2)
indf = np.sqrt(1. * x * x + 1. * y * y) <= radius
# some black magic to treat cases at the borders
x = x + int(np.round(sc))
y = y + int(np.round(sr))
ii = np.ix_(((x.T>63) | (x.T<0))[0])
indf[ii,:] = False
ii = np.ix_(((y>63) | (y<0))[0])
indf[:,ii] = False
indsf = np.where(indf)
swnt = wn[:,inds[1],inds[0]]
frames = []
for delay in range(window[0],window[1],window[2]):
spikest = np.copy(spikes).astype(int)-delay
spikest = np.concatenate([spikest[(spikest>=a)&(spikest<b)] for (a,b) in zip(block_starts,block_stops)])
stiminds = int32(stimindex[spikest])
frames.append(np.mean(swnt[stiminds],0))
STA2 = np.zeros((len(frames), nspace, nspace))
for i,frame in enumerate(frames):
STA2[i,indsf[1],indsf[0]] = frame
return STA2
def get_sta_peak(STA):
peaks = (np.unravel_index(STA.argmin(), STA.shape),np.unravel_index(STA.argmax(), STA.shape))
return peaks[0] if peaks[0][0]<peaks[1][0] else peaks[1]
# return np.unravel_index(np.abs(STA).argmax(), STA.shape)
def Gaussian2D(cent, xo, yo, amplitude, sigma_x, sigma_y, theta, offset):
x,y = cent
xo = float(xo)
yo = float(yo)
a = (np.cos(theta)**2)/(2*sigma_x**2) + (np.sin(theta)**2)/(2*sigma_y**2)
b = -(np.sin(2*theta))/(4*sigma_x**2) + (np.sin(2*theta))/(4*sigma_y**2)
c = (np.sin(theta)**2)/(2*sigma_x**2) + (np.cos(theta)**2)/(2*sigma_y**2)
g = offset + amplitude*np.exp( - (a*((x-xo)**2) + 2*b*(x-xo)*(y-yo)
+ c*((y-yo)**2)))
return g.ravel()
def fit_sta_gaussian(STA, t=None):
nspace = STA.shape[1]
peak = get_sta_peak(STA)
if t is None:
t = peak[0]
# hopefully these are sensible initial conditions
initial_guess = [peak[2],peak[1], STA[peak], 2, 2, 0, 0]
x = np.linspace(0, nspace, nspace)
y = np.linspace(0, nspace, nspace)
x, y = np.meshgrid(x, y)
try:
popt, pcov = opt.curve_fit(Gaussian2D, (x, y), STA[t].flatten(), p0=initial_guess)
except Exception as e:
popt = np.zeros(7)
pcov = np.zeros((7,7))
e.__traceback__ = None
return popt, pcov
def plot_sta_2d (STA, po=None, scale=2, verbose=True, peakloc=True):
peak = get_sta_peak(STA)
if verbose:
print('Peak at %d:%d frame %d'%(peak[1],peak[2],peak[0]))
plt.imshow(STA[peak[0]], origin='lower')
if peakloc:
plt.plot((peak[2],peak[2]),(0, STA.shape[2]),'r:')
plt.plot((0, STA.shape[2]),(peak[1],peak[1]),'r:')
if po is not None:
theta = np.linspace(0,2*np.pi,100)
r = 1 / np.sqrt((np.cos(theta))**2 + (np.sin(theta))**2)
x = r*np.cos(theta)
y = r*np.sin(theta)
data = np.array([x,y])
S = np.array([[scale*po[3],0],[0,scale*po[4]]])
R = np.array([[np.cos(po[5]),-np.sin(po[5])],[np.sin(po[5]),np.cos(po[5])]]).T
T = np.dot(R,S)
data = np.dot(T,data)
data[0] += po[0]
data[1] += po[1]
plt.plot(data[0], data[1], 'r')
plt.grid(False)
def get_sta_at_peak(STA):
peak = get_sta_peak(STA)
return STA[:,peak[1],peak[2]]
plt.xlabel('Time (s)')
def plot_sta_peak(STA, window, Fs, verbose=True):
x = np.arange(window[0], window[1], window[2])/Fs
peak = get_sta_peak(STA)
if verbose:
print('Peak at %d:%d'%(peak[1],peak[2]))
plt.plot(x,STA[:,peak[1],peak[2]])
plt.xlabel('Time (s)')
def plot_sta_peak_crossect(STA, window, Fs, verbose=True, direction=1):
x = np.arange(window[0], window[1], window[2])/Fs
peak = get_sta_peak(STA)
if verbose:
print('Peak at %d:%d'%(peak[1],peak[2]))
for i in range(STA.shape[1]):
if direction == 1:
plt.plot(x,STA[:,i,peak[2]],'grey')
else:
plt.plot(x,STA[:,peak[1],i],'grey')
plt.xlabel('Time (s)')