-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
160 lines (120 loc) · 5.23 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
import torchvision
import torch.nn as nn
from torch.utils.data import Dataset
from typing import List, Optional
from tqdm import tqdm
import itertools
import matplotlib.pyplot as plt
import numpy as np
DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'
# Load the train and test sets.
train = torchvision.datasets.FashionMNIST(root="/tmp", download=True, transform=torchvision.transforms.ToTensor(),
train=True)
testset = torchvision.datasets.FashionMNIST(root="/tmp", download=True, transform=torchvision.transforms.ToTensor(),
train=False)
# Split train data into training and validation sets.
trainset, validset = torch.utils.data.random_split(train, lengths=[50000, 10000])
def add_noise(x):
"""
noising function, removes one or two quadrants of an input image, at random
"""
x = x.detach().clone()
for _ in (1, 2):
for i in range(x.size(0)):
xoffset = np.random.choice([0, 14])
yoffset = np.random.choice([0, 14])
x[i, 0, xoffset:xoffset + 14, yoffset:yoffset + 14] = 0
return x
class AutoEncoder(nn.Module):
def __init__(self, input_dim: int, hidden_dims: Optional[List[int]] = None):
super().__init__()
dims = [input_dim] + (hidden_dims or []) + [input_dim]
self.linear_layers = nn.ModuleList([nn.Linear(d1, d2) for (d1, d2) in zip(dims[:-1], dims[1:])])
def forward(self, x: torch.Tensor):
org_size = list(x.size())
x = x.view(x.size(0), -1) # flatten the input
for linear_layer in self.linear_layers[:-1]:
x = torch.relu(linear_layer(x))
x = self.linear_layers[-1](x)
return x.view(*org_size)
def train_autoencoder(input_dim, trainset, validset, n_epochs, batch_size, lr, optimizer,
hid_dim: Optional[List[int]] = None):
"""
Build an AutoEncoder with mean squared loss, given hyperparameters: n_epochs, learning rate - lr, hidden dimensions - hid_dim,
optimizer in the form troch.optim.name_of_the_optimizer.
Train on trainset, validate on validset.
"""
# Build the model
model = AutoEncoder(input_dim, hid_dim).to(DEVICE)
loss = torch.nn.MSELoss()
# Build the optimizer
optim = optimizer(model.parameters(model), lr)
# Load datasets
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True)
validloader = torch.utils.data.DataLoader(validset, batch_size=batch_size)
# Track loss
loss_hist = {"train": [], "valid": []}
best_loss = 1.0
# Train loop
for epoch in tqdm(range(n_epochs)):
train_loss, valid_loss = 0, 0
for x, _ in trainloader:
x = x.to(DEVICE)
optim.zero_grad()
x_denoise = model(add_noise(x))
l = loss(x_denoise, x)
train_loss += l
l.backward()
optim.step()
for x, _ in validloader:
x = x.to(DEVICE)
with torch.no_grad():
x_denoise = model(add_noise(x))
l = loss(x_denoise, x)
valid_loss += l.item()
best_loss = min(best_loss, valid_loss / len(validloader))
loss_hist["train"].append(train_loss / len(trainloader))
loss_hist["valid"].append(valid_loss / len(validloader))
return model, loss_hist, best_loss
# HYPERPARAMETER SEARCH
# Dimension of the input data.
input_size = trainset[0][0].numel()
# Define possible hyperparameter values.
n_epochs = 25
batch_sizes = [8, 16]
hidden_dims = [[784], [784, 784], [784, 256], [784, 784, 784], [784, 512, 512, 784], [784, 784, 512, 784, 784]]
learning_rates = [1e-3, 1e-4, 3e-4]
optimizer = torch.optim.Adam
# Iterate over all combinations of hyperparameters and find the best (returning smallest valid loss) settings.
# Keep track of the best model and its loss history.
best_model, loss_hist, best_params = None, None, None
best_loss = 1
for hid_dim, learning_rate, batch_size in itertools.product(hidden_dims, learning_rates, batch_sizes):
model, lh, loss = train_autoencoder(input_size, trainset, validset, n_epochs, batch_size, learning_rate, optimizer,
hid_dim)
print(f"Hidden size: {hid_dim},lr: {learning_rate}, best loss: {loss}")
if loss < best_loss:
best_model = model
best_params = (hid_dim, learning_rate, batch_size)
loss_hist = lh
best_loss = loss
print(
f"Best hyperparameters are: batch size = {best_params[2]}, hidden layers = {best_params[0]}, lr = {best_params[1]}")
# Load test data
testloader = torch.utils.data.DataLoader(testset, batch_size=32)
# Evaluate the best model on testset.
x_test, _ = next(iter(testloader))
x_test = x_test.to(DEVICE)
x_noise = add_noise(x_test)
x_denoised = best_model(x_noise).detach()
# Plot some examples of original, noisy and denoised inputs.
fig, ax = plt.subplots(32, 3, figsize=(6, 60))
fig.tight_layout()
for i in range(32):
ax[i][0].imshow(x_test[i, 0].cpu().numpy(), cmap="gray")
ax[i][1].imshow(x_noise[i, 0].cpu().numpy(), cmap="gray")
ax[i][2].imshow(x_denoised[i, 0].cpu().numpy(), cmap="gray")
cols = ["Original input", "Noisy", "Denoised"]
for ax, col in zip(ax[0], cols):
ax.set_title(col)