-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_cost_model.py
473 lines (440 loc) · 18.3 KB
/
run_cost_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
import argparse
import csv
import json
import os.path
from brad.cost_model.preprocessing.feature_statistics import gather_feature_statistics
from brad.cost_model.training.train import train_default, train_readout_hyperparams
from brad.cost_model.dataset.dataset_argment import augment_dataset
from brad.cost_model.training.infer_brad import online_inference_brad
from workloads.cross_db_benchmark.benchmark_tools.autoscale_db import auto_scale
from workloads.cross_db_benchmark.benchmark_tools.database import DatabaseSystem
from workloads.cross_db_benchmark.benchmark_tools.run_workload import run_workload
from workloads.cross_db_benchmark.benchmark_tools.utils import load_json, dumper
from workloads.cross_db_benchmark.benchmark_tools.parse_run import (
parse_queries,
parse_plans,
)
from workloads.cross_db_benchmark.benchmark_tools.generate_workload import (
generate_workload,
)
from workloads.cross_db_benchmark.datasets.datasets import database_dict
from workloads.cross_db_benchmark.benchmark_tools.generate_column_stats import (
generate_stats,
)
from workloads.cross_db_benchmark.benchmark_tools.generate_string_statistics import (
generate_string_stats,
)
class StoreDictKeyPair(argparse.Action):
def __call__(self, parser, namespace, values, option_string=None):
my_dict = {}
for kv in values.split(","):
k, v = kv.split("=")
my_dict[k] = v
setattr(namespace, self.dest, my_dict)
def parse_queries_wrapper(
database: DatabaseSystem,
source: str,
source_aurora: str,
target: str,
cap_queries: int,
db_name: str,
is_brad: bool,
):
raw_plans = load_json(source)
if source_aurora is None or not os.path.exists(source_aurora):
run_stats_aurora = None
else:
run_stats_aurora = load_json(source_aurora)
parsed_runs, stats = parse_queries(
database,
raw_plans,
run_stats_aurora,
cap_queries=cap_queries,
db_name=db_name,
database_conn_args=args.database_conn_dict,
use_true_card=args.use_true_card,
explain_only=args.explain_only,
timeout_ms=args.query_timeout,
include_zero_card=args.include_zero_card,
min_runtime=args.min_query_ms,
max_runtime=args.max_runtime,
zero_card_min_runtime=args.min_query_ms * 5,
target_path=target,
is_brad=is_brad,
include_no_joins=args.include_no_joins,
exclude_runtime_first_run=args.exclude_runtime_first_run,
only_runtime_first_run=args.only_runtime_first_run,
)
with open(target, "w") as outfile:
json.dump(parsed_runs, outfile, default=dumper)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Scaling a dataset
parser.add_argument("--scale_dataset", action="store_true")
parser.add_argument("--scale_factor", default=2, type=int)
parser.add_argument("--PK_randomness", action="store_true")
# Generate workload
parser.add_argument("--generate_workloads", action="store_true")
parser.add_argument("--no_joins_dist_path", default=None, type=str)
parser.add_argument("--data_dir", default=None, type=str)
parser.add_argument("--workload_dir", default=None, type=str)
parser.add_argument("--force", action="store_true")
# Run workload commands
parser.add_argument(
"--database",
default=DatabaseSystem.AURORA,
type=DatabaseSystem,
choices=list(DatabaseSystem),
)
parser.add_argument("--db_name", default="imdb", type=str)
parser.add_argument(
"--database_conn",
dest="database_conn_dict",
action=StoreDictKeyPair,
metavar="KEY1=VAL1,KEY2=VAL2...",
)
parser.add_argument("--host", default="xxx", type=str)
parser.add_argument("--port", default="5432", type=str)
parser.add_argument("--user", default="xxx", type=str)
parser.add_argument("--sslrootcert", default="SSLCERTIFICATE", type=str)
parser.add_argument("--password", default="xxx", type=str)
parser.add_argument("--query_timeout", default=200000, type=int)
parser.add_argument("--min_query_ms", default=100, type=int)
parser.add_argument(
"--database_kwargs",
dest="database_kwarg_dict",
action=StoreDictKeyPair,
metavar="KEY1=VAL1,KEY2=VAL2...",
)
parser.add_argument(
"--run_kwargs",
dest="run_kwarg_dict",
action=StoreDictKeyPair,
metavar="KEY1=VAL1,KEY2=VAL2...",
)
parser.add_argument("--target", default="../zero-shot-data/evaluation/imdb_aurora/")
parser.add_argument("--source", default="")
parser.add_argument("--repetitions_per_query", default=1, type=int)
parser.add_argument("--cap_workload", default=100000, type=int)
parser.add_argument("--with_indexes", action="store_true")
parser.add_argument("--run_workload", action="store_true")
parser.add_argument("--re_execute_query_with_no_result", action="store_true")
# Used to parallelize the data collection.
parser.add_argument("--run_workload_rank", default=0, type=int)
parser.add_argument("--run_workload_world_size", default=1, type=int)
# Needed when collecting data on Athena.
parser.add_argument("--s3_output_path", type=str)
# Parse workload command
parser.add_argument("--parse_plans", action="store_true")
parser.add_argument("--parse_queries", action="store_true")
parser.add_argument("--cap_queries", default=50000, type=int)
parser.add_argument("--include_zero_card", action="store_true")
parser.add_argument("--use_true_card", action="store_true")
parser.add_argument("--include_timeout", action="store_true")
parser.add_argument("--max_runtime", default=200000, type=int)
parser.add_argument("--explain_only", action="store_true")
parser.add_argument("--aurora_workload_runs", default=None, nargs="+")
parser.add_argument("--augment_dataset", action="store_true")
parser.add_argument("--augment_dataset_dist", type=str)
parser.add_argument("--is_brad", action="store_true")
parser.add_argument("--include_no_joins", action="store_true")
parser.add_argument("--exclude_runtime_first_run", action="store_true")
parser.add_argument("--only_runtime_first_run", action="store_true")
# Training cost model command
parser.add_argument("--workload_runs", default=None, nargs="+")
parser.add_argument("--test_workload_runs", default=None, nargs="+")
parser.add_argument(
"--statistics_file",
default="../zero-shot-data/runs/parsed_plans/statistics_workload_combined.json",
)
parser.add_argument("--raw_dir", default=None)
parser.add_argument("--loss_class_name", default="QLoss")
parser.add_argument("--filename_model", default=None)
parser.add_argument("--device", default="cpu")
parser.add_argument("--num_workers", type=int, default=1)
parser.add_argument("--max_epoch_tuples", type=int, default=100000)
parser.add_argument("--max_no_epochs", type=int, default=None)
parser.add_argument("--limit_queries", type=int, default=None)
parser.add_argument("--limit_queries_affected_wl", type=int, default=None)
parser.add_argument("--limit_num_tables", type=int, default=None)
parser.add_argument("--limit_runtime", type=int, default=None)
parser.add_argument("--lower_bound_num_tables", type=int, default=None)
parser.add_argument("--lower_bound_runtime", type=int, default=None)
parser.add_argument("--gather_feature_statistics", action="store_true")
parser.add_argument("--skip_train", action="store_true")
parser.add_argument("--eval_on_test", action="store_true")
parser.add_argument("--save_best", action="store_true")
parser.add_argument("--train_model", action="store_true")
parser.add_argument("--is_query", action="store_true")
parser.add_argument("--plan_featurization", default="AuroraEstSystemCardDetail")
parser.add_argument(
"--hyperparameter_path",
default="setup/tuned_hyperparameters/tune_best_config.json",
)
parser.add_argument("--seed", type=int, default=0)
# Brad online inference with cost model
parser.add_argument("--infer_brad", action="store_true")
parser.add_argument(
"--infer_brad_sql_file", type=str, help="file of sql queries to be inferred"
)
parser.add_argument(
"--infer_brad_runtime_file",
default=None,
type=str,
help="file of sql queries to be inferred",
)
parser.add_argument(
"--infer_brad_db_stats_file", type=str, help="file of IMDB database stats"
)
parser.add_argument(
"--infer_brad_model_dir",
type=str,
help="directory of trained models for all services",
)
args = parser.parse_args()
if args.database_conn_dict is None:
args.database_conn_dict = {
"host": args.host,
"port": args.port,
"user": args.user,
"sslrootcert": args.sslrootcert,
"password": args.password,
}
if args.database_kwarg_dict is None:
args.database_kwarg_dict = dict()
if args.run_kwarg_dict is None:
args.run_kwarg_dict = dict()
if args.scale_dataset:
auto_scale(
args.source,
args.target,
args.db_name,
args.scale_factor,
args.PK_randomness,
)
if args.generate_workloads:
workload_defs = {
# for complex predicates
"complex_workload_10k_s1": dict(
num_queries=10000,
max_no_aggregates=2,
max_no_group_by=0,
max_cols_per_agg=1,
complex_predicates=True,
max_no_joins=10,
min_no_joins=4,
max_no_predicates=6,
min_no_predicates=2,
seed=1,
),
"simple_workload_25k_s1": dict(
num_queries=25000,
max_no_aggregates=2,
max_no_group_by=1,
max_cols_per_agg=1,
complex_predicates=True,
max_no_joins=2,
min_no_joins=0,
max_no_predicates=4,
min_no_predicates=1,
seed=1,
),
# this even simpler
"simple_workload_25k_s2": dict(
num_queries=25000,
max_no_aggregates=2,
max_no_group_by=1,
max_cols_per_agg=1,
complex_predicates=False,
max_no_joins=2,
min_no_joins=0,
max_no_predicates=4,
min_no_predicates=1,
seed=2,
),
}
no_joins_dist = []
if args.no_joins_dist_path:
with open(args.no_joins_dist_path) as f:
no_joins_dist = list(csv.reader(f, delimiter=","))[0]
no_joins_dist = [float(i) for i in no_joins_dist]
if args.db_name is not None:
assert args.db_name in database_dict
dataset = database_dict[args.db_name]
data_dir = os.path.join(args.data_dir, dataset.data_folder)
generate_stats(data_dir, args.db_name, force=args.force)
generate_string_stats(data_dir, args.db_name, force=args.force)
for workload_name, workload_args in workload_defs.items():
workload_path = os.path.join(
args.workload_dir, dataset.db_name, f"{workload_name}.sql"
)
generate_workload(
dataset.source_dataset,
workload_path,
no_joins_dist=no_joins_dist,
**workload_args,
force=args.force,
full_outer_join=dataset.full_outer_join,
)
if args.run_workload:
run_workload(
args.source,
args.database,
args.db_name,
args.database_conn_dict,
args.database_kwarg_dict,
args.target,
args.run_kwarg_dict,
args.repetitions_per_query,
args.query_timeout,
with_indexes=args.with_indexes,
cap_workload=args.cap_workload,
min_runtime=args.min_query_ms,
re_execute_query=args.re_execute_query_with_no_result,
rank=args.run_workload_rank,
world_size=args.run_workload_world_size,
s3_output_path=args.s3_output_path,
explain_only=args.explain_only,
)
if args.parse_plans:
cap_queries = args.cap_queries
if cap_queries == "None":
cap_queries = None
for workload_file in args.workload_runs:
raw_plans = load_json(workload_file)
parsed_runs, stats = parse_plans(
raw_plans,
cap_queries=cap_queries,
include_zero_card=args.include_zero_card,
max_runtime=args.max_runtime,
)
target_path = os.path.join(
args.target,
workload_file.split("/")[-1].split(".json")[0] + "_parsed_plan.json",
)
with open(target_path, "w") as outfile:
json.dump(parsed_runs, outfile, default=dumper)
if args.parse_queries:
cap_queries = args.cap_queries
if cap_queries == "None":
cap_queries = None
for i, workload_file in enumerate(args.workload_runs):
if args.aurora_workload_runs is not None and i < len(
args.aurora_workload_runs
):
aurora_workload_file = args.aurora_workload_runs[i]
else:
aurora_workload_file = None
target = os.path.join(
args.target,
workload_file.split("/")[-1].split(".json")[0] + "_parsed_queries.json",
)
parse_queries_wrapper(
args.database,
workload_file,
aurora_workload_file,
target,
cap_queries,
args.db_name,
args.is_brad,
)
if args.augment_dataset:
for i, workload_file in enumerate(args.workload_runs):
target = os.path.join(
args.target,
workload_file.split("/")[-1].split(".json")[0] + "_augmented.json",
)
augment_dataset(workload_file, target, args.augment_dataset_dist)
if args.gather_feature_statistics:
# gather_feature_statistics
# workload_runs = []
# for wl in args.workload_runs:
# workload_runs += glob.glob(f'{args.raw_dir}/*/{wl}')
workload_runs = args.workload_runs
# for some reason, ignore this file
broken_files = [
"../zero-shot-data/runs/parsed_plans/tpc_h/workload_100k_s1_c8220.json"
]
for file in broken_files:
if file in workload_runs:
workload_runs.remove(file)
gather_feature_statistics(workload_runs, args.target)
if args.train_model:
if args.hyperparameter_path is None:
# for testing
train_default(
args.workload_runs,
args.test_workload_runs,
args.statistics_file,
args.target,
args.filename_model,
plan_featurization=args.plan_featurization,
device=args.device,
num_workers=args.num_workers,
max_epoch_tuples=args.max_epoch_tuples,
seed=args.seed,
database=args.database,
limit_queries=args.limit_queries,
limit_queries_affected_wl=args.limit_queries_affected_wl,
max_no_epochs=args.max_no_epochs,
skip_train=args.skip_train,
loss_class_name=args.loss_class_name,
save_best=args.save_best,
eval_on_test=args.eval_on_test,
)
else:
model = train_readout_hyperparams(
args.workload_runs,
args.test_workload_runs,
args.statistics_file,
args.target,
args.filename_model,
args.hyperparameter_path,
device=args.device,
num_workers=args.num_workers,
max_epoch_tuples=args.max_epoch_tuples,
seed=args.seed,
database=args.database,
limit_queries=args.limit_queries,
limit_queries_affected_wl=args.limit_queries_affected_wl,
limit_num_tables=args.limit_num_tables,
limit_runtime=args.limit_runtime,
lower_bound_num_tables=args.lower_bound_num_tables,
lower_bound_runtime=args.lower_bound_runtime,
max_no_epochs=args.max_no_epochs,
skip_train=args.skip_train,
loss_class_name=args.loss_class_name,
save_best=args.save_best,
eval_on_test=args.eval_on_test,
)
if args.infer_brad:
with open(args.infer_brad_sql_file, "r") as f:
workload_sqls = f.readlines()
database_stats = load_json(args.infer_brad_db_stats_file)
hyperparameter_paths = {
"aurora": "src/brad/cost_model/setup/tuned_hyperparameters/aurora_tune_est_best_config.json",
"redshift": "src/brad/cost_model/setup/tuned_hyperparameters/redshift_tune_est_best_config.json",
"athena": "src/brad/cost_model/setup/tuned_hyperparameters/athena_tune_est_best_config.json",
}
if args.infer_brad_runtime_file is None:
runtimes = None
else:
runtimes = []
with open(args.infer_brad_runtime_file, "r") as f:
raw = f.readlines()
for line in raw:
db_engine, runtime = tuple(line.split(","))
runtime = float(runtime.strip())
runtimes.append((db_engine.split(), runtime))
pred_result, query_meta_data = online_inference_brad(
test_workload_sqls=workload_sqls,
runtimes=runtimes,
database_stats=database_stats,
statistics_file=args.statistics_file,
database_conn_args=args.database_conn_dict,
filename_model=args.filename_model,
hyperparameter_paths=hyperparameter_paths,
model_dir=args.infer_brad_model_dir,
device="cpu",
db_name="imdb",
)