-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathmodel_serving.yaml
85 lines (76 loc) · 3.14 KB
/
model_serving.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# serve: (Optional)
# servable: (Optional) Indicate the model is servable. Default: False
# tested_platforms (optional list): platform on which this model can served (current options: kubernetes, knative, seldon, wml, kfserving)
# model_source: (Optional) - (Required if servable is true)
# servable_model: (Required for s3 or url type)
# data_store: (Required for s3 type) datastore for the model source
# bucket: (Required for s3 type) Bucket that has the model source
# path: (Required for s3 type) Source path to the model
# url: (Required for url type) Source URL for the model
# servable_model_local: (Optional)
# path: (Optional) Servable model path in the user local machine
# serving_container_image: (Required for container type)
# container_image_url: (Required for container type) Container image to serve the model.
# container_store: (Optional) container_store name
serve:
servable: true
tested_platforms:
- kubernetes
- knative
model_source:
servable_model:
data_store: age_datastore
bucket: facial-age-estimator
path: 2.0/assets/
url: ""
servable_model_local:
path: /local/1.0/assets/
url: ""
scorable_model_local:
path: /local/1.0/assets/
serving_container_image:
container_image_url: "codait/max-facial-age-estimator:latest"
container_store: container_store
# process: (Optional)
# - name: (Required) Script Process name. Can mix any kind of process here
# params: (Optional) Free flowing list of key:value paisrs
# staging_dir: (Optional) Staging directory within the local machine
# trained_model_path: (Optional) trained model path within the object storage bucket
process:
- name: serving_pre_process
params:
key: value
staging_dir: training_output/
trained_model_path:
# data_stores: (Optional) - (Required for trainable)
# - name: (Required) name of the data_stores
# connection:
# endpoing: (Required) Object Storage endpoint URL or public Object Storage key link.
# access_key_id: (Required) Object Storage access_key_id
# secret_access_key: (Required) Object secret_access_key
data_stores:
- name: age_datastore
type: s3
connection:
endpoint: https://s3-api.us-geo.objectstorage.softlayer.net
access_key_id: xxxxxxxxxx
secret_access_key: xxxxxxxxxxxxx
# data_stores_file_paths: (Optional) -
# - name: (Required) name of the data_store_file_path
# key: value
data_store_file_paths:
- name: serving_file_paths
feature_file: 2.0/assets/features.csv
input_schema_file: 2.0/assets/input_schema.json
output_schema_file: 2.0/assets/output_schema.json
sample_inputs_file: 2.0/assets/scoring_inputs.json
# container_stores: (Optional)
# - name: (Required) name of the container_store
# connection:
# container_registry: (Required) container registry for this container_store
# container_registry_token: (Required if container registry is private) container registry token
container_stores:
- name: container_store
connection:
container_registry: docker.io
container_registry_token: ""