diff --git a/FormalBook/Chapter_06.lean b/FormalBook/Chapter_06.lean index 12a1044..8c4d7c9 100644 --- a/FormalBook/Chapter_06.lean +++ b/FormalBook/Chapter_06.lean @@ -37,24 +37,20 @@ This is a TODO in `RingTheory.IntegralDomain`. -- TODO: find the appropriate lemmas for use in the end of the proof... example (i j : ℕ) (gj: 0 ≠ j) (h: i ∣ j): i ≤ j:= by - dsimp [Dvd.dvd] at h cases' h with c h₀ cases' em (c = 0) with hc h · by_contra rw [hc] at h₀ - simp only [mul_zero] at h₀ exact gj h₀.symm · calc i ≤ i*c := le_mul_of_le_of_one_le rfl.ge (zero_lt_iff.mpr h) _ = j := h₀.symm lemma le_abs_of_dvd {i j : ℤ} (gj: 0 ≠ j) (h: i ∣ j) : |i| ≤ |j| := by - dsimp [Dvd.dvd] at h cases' h with c h₀ cases' em (c = 0) with hc h · by_contra - rw [hc] at h₀ - simp only [mul_zero] at h₀ + rw [hc, mul_zero] at h₀ exact gj h₀.symm · calc |i| ≤ (|i|)*|c| := by exact le_mul_of_le_of_one_le' rfl.ge (Int.one_le_abs h) (abs_nonneg c) (abs_nonneg i) @@ -69,9 +65,8 @@ lemma phi_dvd (n : ℕ) : phi n ∣ X ^ n - 1 := by exact cyclotomic.dvd_X_pow_sub_one n ℤ lemma phi_div_2 (n : ℕ) (k : ℕ) (_ : 1 ≠ k) (h₂ : k ∣ n) (h₃ : k < n) : - (X ^ k - 1) * (phi n)∣ (X ^ n - 1) := by - have h_proper_div : k ∈ n.properDivisors := Nat.mem_properDivisors.mpr ⟨h₂, h₃⟩ - exact X_pow_sub_one_mul_cyclotomic_dvd_X_pow_sub_one_of_dvd ℤ h_proper_div + (X ^ k - 1) * (phi n)∣ (X ^ n - 1) := + X_pow_sub_one_mul_cyclotomic_dvd_X_pow_sub_one_of_dvd ℤ (Nat.mem_properDivisors.mpr ⟨h₂, h₃⟩) variable {R : Type _} [DecidableEq R] [DivisionRing R] @@ -181,7 +176,6 @@ lemma orbit_stabilizer [Fintype R] (A: ConjClasses Rˣ) [Fintype A.carrier] : convert this rw [ConjAct.orbit_eq_carrier_conjClasses, (ConjClasses.exists_rep A|>.choose_spec)] - section wedderburn theorem wedderburn (h: Fintype R): IsField R := by