-
Notifications
You must be signed in to change notification settings - Fork 197
/
Copy pathsdxl_prompt2prompt_mapper.py
1409 lines (1231 loc) · 56.5 KB
/
sdxl_prompt2prompt_mapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import abc
import logging
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
from data_juicer.ops.base_op import OPERATORS, Mapper
from data_juicer.ops.op_fusion import LOADED_IMAGES
from data_juicer.utils.lazy_loader import LazyLoader
from data_juicer.utils.model_utils import get_model, prepare_model
diffusers = LazyLoader('diffusers', 'diffusers')
torch = LazyLoader('torch', 'torch')
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
OP_NAME = 'sdxl_prompt2prompt_mapper'
@OPERATORS.register_module(OP_NAME)
@LOADED_IMAGES.register_module(OP_NAME)
class SDXLPrompt2PromptMapper(Mapper):
"""
Generate pairs of similar images by the SDXL model
"""
_accelerator = 'cuda'
def __init__(
self,
hf_diffusion: str = 'stabilityai/stable-diffusion-xl-base-1.0',
trust_remote_code=False,
torch_dtype: str = 'fp32',
num_inference_steps: float = 50,
guidance_scale: float = 7.5,
text_key_second=None,
text_key_third=None,
*args,
**kwargs):
"""
Initialization method.
:param hf_diffusion: diffusion model name on huggingface to generate
the image.
:param torch_dtype: the floating point type used to load the diffusion
model.
:param num_inference_steps: The larger the value, the better the
image generation quality; however, this also increases the time
required for generation.
:param guidance_scale: A higher guidance scale value encourages the
model to generate images closely linked to the text prompt at the
expense of lower image quality. Guidance scale is enabled when
:param text_key_second: used to store the first caption
in the caption pair.
:param text_key_third: used to store the second caption
in the caption pair.
"""
kwargs.setdefault('mem_required', '38GB')
super().__init__(*args, **kwargs)
self._init_parameters = self.remove_extra_parameters(locals())
self.num_inference_steps = num_inference_steps
self.guidance_scale = guidance_scale
self.hf_diffusion = hf_diffusion
self.torch_dtype = torch_dtype
self.model_key = prepare_model(
model_type='sdxl-prompt-to-prompt',
pretrained_model_name_or_path=hf_diffusion,
pipe_func=Prompt2PromptPipeline,
torch_dtype=torch_dtype)
self.text_key_second = text_key_second
self.text_key_third = text_key_third
def process_single(self, sample, rank=None, context=False):
if self.text_key_second is None:
logger.error('This OP (sdxl_prompt2prompt_mapper) requires \
processing multiple fields, and you need to specify \
valid `text_key_second`')
if self.text_key_third is None:
logger.error('This OP (sdxl_prompt2prompt_mapper) requires \
processing multiple fields, and you need to specify \
valid `text_key_third`')
model = get_model(model_key=self.model_key,
rank=rank,
use_cuda=self.use_cuda())
seed = 0
g_cpu = torch.Generator().manual_seed(seed)
cross_attention_kwargs = {
'edit_type': 'refine',
'n_self_replace': 0.4,
'n_cross_replace': {
'default_': 1.0,
'confetti': 0.8
},
}
sample[self.image_key] = []
with torch.no_grad():
prompts = [
sample[self.text_key_second], sample[self.text_key_third]
]
image = model(prompts,
cross_attention_kwargs=cross_attention_kwargs,
guidance_scale=self.guidance_scale,
num_inference_steps=self.num_inference_steps,
generator=g_cpu)
for idx, img in enumerate(image[self.image_key]):
sample[self.image_key].append(img)
return sample
# Copied from diffusers.pipelines.stable_diffusion.
# pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on
findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)),
keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale
# to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (
1 - guidance_rescale) * noise_cfg
return noise_cfg
# Copied from https://github.com/RoyiRa/prompt-to-prompt-with-sdxl
class Prompt2PromptPipeline(
diffusers.pipelines.stable_diffusion_xl.StableDiffusionXLPipeline):
r"""
Args:
Prompt-to-Prompt-Pipeline for text-to-image generation using
Stable Diffusion. This model inherits from
[`StableDiffusionPipeline`]. Check the superclass documentation
for the generic methods the library implements for
all the pipelines (such as downloading or saving, running on a
particular device, etc.)
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode
images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/
clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/
clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/
v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture
to denoise the encoded image latents. scheduler
([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise
the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated
images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/
runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be
used as inputs for the `safety_checker`.
"""
_optional_components = ['safety_checker', 'feature_extractor']
def check_inputs(
self,
prompt,
prompt_2,
height,
width,
callback_steps,
negative_prompt=None,
negative_prompt_2=None,
prompt_embeds=None,
negative_prompt_embeds=None,
pooled_prompt_embeds=None,
negative_pooled_prompt_embeds=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f'`height` and `width` have to be divisible by \
8 but are {height} and {width}.')
if (callback_steps is None) or (callback_steps is not None and
(not isinstance(callback_steps, int)
or callback_steps <= 0)):
raise ValueError(f'`callback_steps` has to be a positive integer \
but is {callback_steps} of type'
f' {type(callback_steps)}.')
if prompt is not None and prompt_embeds is not None:
raise ValueError(f'Cannot forward both `prompt`: {prompt} and \
`prompt_embeds`: {prompt_embeds}. Please make sure to'
' only forward one of the two.')
elif prompt_2 is not None and prompt_embeds is not None:
raise ValueError(f'Cannot forward both `prompt_2`: {prompt_2} and \
`prompt_embeds`: {prompt_embeds}. Please make sure to'
' only forward one of the two.')
elif prompt is None and prompt_embeds is None:
raise ValueError('Provide either `prompt` or `prompt_embeds`. \
Cannot leave both `prompt` and `prompt_embeds` undefined.')
elif prompt is not None and (not isinstance(prompt, str)
and not isinstance(prompt, list)):
raise ValueError(f'`prompt` has to be of type `str` or `list` \
but is {type(prompt)}')
elif prompt_2 is not None and (not isinstance(prompt_2, str)
and not isinstance(prompt_2, list)):
raise ValueError(f'`prompt_2` has to be of type `str` or `list` \
but is {type(prompt_2)}')
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(f'Cannot forward both `negative_prompt`: \
{negative_prompt} and `negative_prompt_embeds`:'
f' {negative_prompt_embeds}. Please make sure \
to only forward one of the two.')
elif (negative_prompt_2 is not None
and negative_prompt_embeds is not None):
raise ValueError(f'Cannot forward both `negative_prompt_2`: \
{negative_prompt_2} and `negative_prompt_embeds`:'
f' {negative_prompt_embeds}. Please make sure \
to only forward one of the two.')
if (prompt_embeds is not None and negative_prompt_embeds is not None):
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
'`prompt_embeds` and `negative_prompt_embeds` \
must have the same shape when passed directly, but'
f' got: `prompt_embeds` {prompt_embeds.shape} \
!= `negative_prompt_embeds`'
f' {negative_prompt_embeds.shape}.')
if prompt_embeds is not None and pooled_prompt_embeds is None:
raise ValueError(
'If `prompt_embeds` are provided, `pooled_prompt_embeds` \
also have to be passed. Make sure to generate \
`pooled_prompt_embeds` from the same text encoder \
that was used to generate `prompt_embeds`.')
if (negative_prompt_embeds is not None
and negative_pooled_prompt_embeds is None):
raise ValueError('If `negative_prompt_embeds` are provided, \
`negative_pooled_prompt_embeds` also have to be passed. \
Make sure to generate `negative_pooled_prompt_embeds`\
from the same text encoder that was used to \
generate `negative_prompt_embeds`.')
def _aggregate_and_get_attention_maps_per_token(self, with_softmax):
attention_maps = self.controller.aggregate_attention(
from_where=('up_cross', 'down_cross', 'mid_cross'),
# from_where=("up", "down"),
# from_where=("down",)
)
attention_maps_list = self._get_attention_maps_list(
attention_maps=attention_maps, with_softmax=with_softmax)
return attention_maps_list
@staticmethod
def _get_attention_maps_list(attention_maps: torch.Tensor,
with_softmax) -> List[torch.Tensor]:
attention_maps *= 100
if with_softmax:
attention_maps = torch.nn.functional.softmax(attention_maps,
dim=-1)
attention_maps_list = [
attention_maps[:, :, i] for i in range(attention_maps.shape[2])
]
return attention_maps_list
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
denoising_end: Optional[float] = None,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator,
List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = 'pil',
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor],
None]] = None,
callback_steps: Optional[int] = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
original_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Optional[Tuple[int, int]] = None,
negative_original_size: Optional[Tuple[int, int]] = None,
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
negative_target_size: Optional[Tuple[int, int]] = None,
attn_res=None,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
height (`int`, *optional*, defaults to
self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to
self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps
usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion
Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale
is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that
are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation.
Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper:
https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/
docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian
distribution, to be used as inputs for image
generation. Can be used to tweak the same generation
with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied
random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/):
`PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.
StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps`
steps during inference. The function will be
called with the following arguments: `callback(step: int,
timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be
called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to
the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/
blob/main/src/diffusers/models/attention_processor.py).
The keyword arguments to configure the edit are:
- edit_type (`str`). The edit type to apply. Can be either of
`replace`, `refine`, `reweight`.
- n_cross_replace (`int`): Number of diffusion steps in which
cross attention should be replaced
- n_self_replace (`int`): Number of diffusion steps in which
self attention should be replaced
- local_blend_words(`List[str]`, *optional*, default to
`None`): Determines which area should be
changed. If None, then the whole image can be changed.
- equalizer_words(`List[str]`, *optional*, default to
`None`): Required for edit type `reweight`.
Determines which words should be enhanced.
- equalizer_strengths (`List[float]`, *optional*, default
to `None`) Required for edit type `reweight`.
Determines which how much the words in `equalizer_words`
should be enhanced.
guidance_rescale (`float`, *optional*, defaults to 0.0):
Guidance rescale factor from [Common Diffusion Noise
Schedules and Sample Steps are
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance
rescale factor should fix overexposure when
using zero terminal SNR.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`]
or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`]
if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the
generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated
image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
original_size = original_size or (height, width)
target_size = target_size or (height, width)
if attn_res is None:
attn_res = int(np.ceil(width / 32)), int(np.ceil(height / 32))
self.attn_res = attn_res
self.controller = create_controller(prompt,
cross_attention_kwargs,
num_inference_steps,
tokenizer=self.tokenizer,
device=self.device,
attn_res=self.attn_res)
self.register_attention_control(
self.controller) # add attention controller
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
height,
width,
callback_steps,
negative_prompt,
negative_prompt_2,
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight
# `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf .
# `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_encoder_lora_scale = (cross_attention_kwargs.get(
'scale', None) if cross_attention_kwargs is not None else None)
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
lora_scale=text_encoder_lora_scale,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
latents[1] = latents[0]
# 6. Prepare extra step kwargs. TODO: Logic should
# ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Prepare added time ids & embeddings
add_text_embeds = pooled_prompt_embeds
add_time_ids = self._get_add_time_ids(
original_size,
crops_coords_top_left,
target_size,
dtype=prompt_embeds.dtype,
text_encoder_projection_dim=self.text_encoder_2.config.
projection_dim # if none should be changed to enc1
)
if (negative_original_size is not None
and negative_target_size is not None):
negative_add_time_ids = self._get_add_time_ids(
negative_original_size,
negative_crops_coords_top_left,
negative_target_size,
dtype=prompt_embeds.dtype,
)
else:
negative_add_time_ids = add_time_ids
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds],
dim=0)
add_text_embeds = torch.cat(
[negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids],
dim=0)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device).repeat(
batch_size * num_images_per_prompt, 1)
# 8. Denoising loop
num_warmup_steps = max(
len(timesteps) - num_inference_steps * self.scheduler.order, 0)
# 7.1 Apply denoising_end
if denoising_end is not None and isinstance(
denoising_end,
float) and denoising_end > 0 and denoising_end < 1:
discrete_timestep_cutoff = int(
round(self.scheduler.config.num_train_timesteps -
(denoising_end *
self.scheduler.config.num_train_timesteps)))
num_inference_steps = len(
list(
filter(lambda ts: ts >= discrete_timestep_cutoff,
timesteps)))
timesteps = timesteps[:num_inference_steps]
added_cond_kwargs = {
'text_embeds': add_text_embeds,
'time_ids': add_time_ids
}
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat(
[latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
added_cond_kwargs=added_cond_kwargs,
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond)
if do_classifier_free_guidance and guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(
noise_pred,
noise_pred_text,
guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents,
**extra_step_kwargs).prev_sample
# step callback
latents = self.controller.step_callback(latents)
# call the callback, if provided
if (i == len(timesteps) - 1
or ((i + 1) > num_warmup_steps and
(i + 1) % self.scheduler.order == 0)):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, 'order', 1)
callback(step_idx, t, latents)
# 8. Post-processing
if not output_type == 'latent':
# make sure the VAE is in float32 mode, as it overflows in float16
needs_upcasting = (self.vae.dtype == torch.float16
and self.vae.config.force_upcast)
if needs_upcasting:
self.upcast_vae()
latents = latents.to(
next(iter(self.vae.post_quant_conv.parameters())).dtype)
image = self.vae.decode(latents / self.vae.config.scaling_factor,
return_dict=False)[0]
# cast back to fp16 if needed
if needs_upcasting:
self.vae.to(dtype=torch.float16)
else:
image = latents
if not output_type == 'latent':
# apply watermark if available
if self.watermark is not None:
image = self.watermark.apply_watermark(image)
image = self.image_processor.postprocess(image,
output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image, )
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import \
StableDiffusionXLPipelineOutput
return StableDiffusionXLPipelineOutput(images=image)
def register_attention_control(self, controller):
attn_procs = {}
cross_att_count = 0
for name in self.unet.attn_processors.keys():
None if name.endswith(
'attn1.processor') else self.unet.config.cross_attention_dim
if name.startswith('mid_block'):
self.unet.config.block_out_channels[-1]
place_in_unet = 'mid'
elif name.startswith('up_blocks'):
block_id = int(name[len('up_blocks.')])
list(reversed(self.unet.config.block_out_channels))[block_id]
place_in_unet = 'up'
elif name.startswith('down_blocks'):
block_id = int(name[len('down_blocks.')])
self.unet.config.block_out_channels[block_id]
place_in_unet = 'down'
else:
continue
cross_att_count += 1
attn_procs[name] = P2PCrossAttnProcessor(
controller=controller, place_in_unet=place_in_unet)
self.unet.set_attn_processor(attn_procs)
controller.num_att_layers = cross_att_count
# Copied from https://github.com/RoyiRa/prompt-to-prompt-with-sdxl
class P2PCrossAttnProcessor:
def __init__(self, controller, place_in_unet):
super().__init__()
self.controller = controller
self.place_in_unet = place_in_unet
def __call__(self,
attn: diffusers.models.attention.Attention,
hidden_states,
encoder_hidden_states=None,
attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask,
sequence_length,
batch_size)
query = attn.to_q(hidden_states)
is_cross = encoder_hidden_states is not None
if encoder_hidden_states is not None:
encoder_hidden_states = encoder_hidden_states
else:
encoder_hidden_states = hidden_states
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
# one line change
self.controller(attention_probs, is_cross, self.place_in_unet)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class AttentionControl(abc.ABC):
def step_callback(self, x_t):
return x_t
def between_steps(self):
return
@property
def num_uncond_att_layers(self):
return 0
@abc.abstractmethod
def forward(self, attn, is_cross: bool, place_in_unet: str):
raise NotImplementedError
def __call__(self, attn, is_cross: bool, place_in_unet: str):
if self.cur_att_layer >= self.num_uncond_att_layers:
h = attn.shape[0]
attn[h // 2:] = self.forward(attn[h // 2:], is_cross,
place_in_unet)
self.cur_att_layer += 1
if self.cur_att_layer == (self.num_att_layers +
self.num_uncond_att_layers):
self.cur_att_layer = 0
self.cur_step += 1
self.between_steps()
return attn
def reset(self):
self.cur_step = 0
self.cur_att_layer = 0
def __init__(self, attn_res=None):
self.cur_step = 0
self.num_att_layers = -1
self.cur_att_layer = 0
self.attn_res = attn_res
def create_controller(prompts: List[str], cross_attention_kwargs: Dict,
num_inference_steps: int, tokenizer, device,
attn_res) -> AttentionControl:
edit_type = cross_attention_kwargs.get('edit_type', None)
local_blend_words = cross_attention_kwargs.get('local_blend_words', None)
equalizer_words = cross_attention_kwargs.get('equalizer_words', None)
equalizer_strengths = cross_attention_kwargs.get('equalizer_strengths',
None)
n_cross_replace = cross_attention_kwargs.get('n_cross_replace', 0.4)
n_self_replace = cross_attention_kwargs.get('n_self_replace', 0.4)
# only replace
if edit_type == 'replace' and local_blend_words is None:
return AttentionReplace(prompts,
num_inference_steps,
n_cross_replace,
n_self_replace,
tokenizer=tokenizer,
device=device,
attn_res=attn_res)
# replace + localblend
if edit_type == 'replace' and local_blend_words is not None:
lb = LocalBlend(prompts,
local_blend_words,
tokenizer=tokenizer,
device=device,
attn_res=attn_res)
return AttentionReplace(prompts,
num_inference_steps,
n_cross_replace,
n_self_replace,
lb,
tokenizer=tokenizer,
device=device,
attn_res=attn_res)
# only refine
if edit_type == 'refine' and local_blend_words is None:
return AttentionRefine(prompts,
num_inference_steps,
n_cross_replace,
n_self_replace,
tokenizer=tokenizer,
device=device,
attn_res=attn_res)
# refine + localblend
if edit_type == 'refine' and local_blend_words is not None:
lb = LocalBlend(prompts,
local_blend_words,
tokenizer=tokenizer,
device=device,
attn_res=attn_res)
return AttentionRefine(prompts,
num_inference_steps,
n_cross_replace,
n_self_replace,
lb,
tokenizer=tokenizer,
device=device,
attn_res=attn_res)
# only reweight
if edit_type == 'reweight' and local_blend_words is None:
assert (equalizer_words is not None and equalizer_strengths is not None
), 'To use reweight edit, please specify equalizer_words \
and equalizer_strengths.'
assert len(equalizer_words) == len(
equalizer_strengths
), 'equalizer_words and equalizer_strengths must be of same length.'
equalizer = get_equalizer(prompts[1],
equalizer_words,
equalizer_strengths,
tokenizer=tokenizer)
return AttentionReweight(
prompts,
num_inference_steps,
n_cross_replace,
n_self_replace,
tokenizer=tokenizer,
device=device,
equalizer=equalizer,
attn_res=attn_res,
)
# reweight and localblend
if edit_type == 'reweight' and local_blend_words:
assert (equalizer_words is not None and equalizer_strengths is not None
), 'To use reweight edit, please specify equalizer_words \
and equalizer_strengths.'
assert len(equalizer_words) == len(
equalizer_strengths
), 'equalizer_words and equalizer_strengths must be of same length.'
equalizer = get_equalizer(prompts[1],
equalizer_words,
equalizer_strengths,
tokenizer=tokenizer)
lb = LocalBlend(prompts,
local_blend_words,
tokenizer=tokenizer,
device=device,
attn_res=attn_res)
return AttentionReweight(
prompts,
num_inference_steps,
n_cross_replace,
n_self_replace,
tokenizer=tokenizer,
device=device,
equalizer=equalizer,
attn_res=attn_res,
local_blend=lb,
)
raise ValueError(f'Edit type {edit_type} not recognized. Use one of: \
replace, refine, reweight.')
class EmptyControl(AttentionControl):
def forward(self, attn, is_cross: bool, place_in_unet: str):
return attn
class AttentionStore(AttentionControl):
@staticmethod
def get_empty_store():
return {
'down_cross': [],
'mid_cross': [],
'up_cross': [],
'down_self': [],
'mid_self': [],
'up_self': []
}
def forward(self, attn, is_cross: bool, place_in_unet: str):
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
if attn.shape[1] <= 32**2: # avoid memory overhead
self.step_store[key].append(attn)
return attn
def between_steps(self):
if len(self.attention_store) == 0:
self.attention_store = self.step_store
else:
for key in self.attention_store:
for i in range(len(self.attention_store[key])):
self.attention_store[key][i] += self.step_store[key][i]
self.step_store = self.get_empty_store()
def get_average_attention(self):
average_attention = {
key: [item / self.cur_step for item in self.attention_store[key]]
for key in self.attention_store
}
return average_attention
def reset(self):
super(AttentionStore, self).reset()
self.step_store = self.get_empty_store()
self.attention_store = {}
def __init__(self, attn_res=None):
super(AttentionStore, self).__init__(attn_res)
self.step_store = self.get_empty_store()
self.attention_store = {}
class LocalBlend:
def __call__(self, x_t, attention_store):
# note that this code works on the latent level!
k = 1
# maps = attention_store["down_cross"][2:4] +
# attention_store["up_cross"][:3]
# These are the numbers because we want to take layers
# that are 256 x 256,
# I think this can be changed to something smarter...like,
# get all attentions where thesecond dim is self.attn_res[0]
# * self.attn_res[1] in up and down cross.
maps = [
m for m in attention_store['down_cross'] +
attention_store['mid_cross'] + attention_store['up_cross']
if m.shape[1] == self.attn_res[0] * self.attn_res[1]
]
maps = [
item.reshape(self.alpha_layers.shape[0], -1, 1, self.attn_res[0],
self.attn_res[1], self.max_num_words) for item in maps
]
maps = torch.cat(maps, dim=1)
maps = (maps * self.alpha_layers).sum(-1).mean(1)
# since alpha_layers is all 0s except where we edit, the
# product zeroes out all but what we change. Then, the sum
# adds the values of the original and what we edit. Then,
# we average across dim=1, which is the number of layers.
mask = torch.nn.functional.max_pool2d(maps, (k * 2 + 1, k * 2 + 1),
(1, 1),
padding=(k, k))
mask = torch.nn.functional.interpolate(mask, size=(x_t.shape[2:]))
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
mask = mask.gt(self.threshold)
mask = mask[:1] + mask[1:]
mask = mask.to(torch.float16)
x_t = x_t[:1] + mask * (x_t - x_t[:1])
# x_t[:1] is the original image. mask*(x_t - x_t[:1])
# zeroes out the original image and removes the difference
# between the original and each image we are generating
# (mostly just one). Then, it applies the mask on the image.
# That is, it's only keeping the cells we want to generate.
return x_t
def __init__(self,