-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patharguments.py
87 lines (66 loc) · 2.23 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import argparse
import os
import torch
import numpy as np
import torch
import random
import re
import yaml
import shutil
import warnings
from datetime import datetime
class Namespace(object):
def __init__(self, somedict):
for key, value in somedict.items():
assert isinstance(key, str) and re.match("[A-Za-z_-]", key)
if isinstance(value, dict):
self.__dict__[key] = Namespace(value)
else:
self.__dict__[key] = value
def __getattr__(self, attribute):
raise AttributeError(f"Can not find {attribute} in namespace. Please write {attribute} in your configs file(xxx.yaml)!")
def set_deterministic(seed):
# seed by default is None
if seed is not None:
print(f"Deterministic with seed = {seed}")
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--configs-file', required=True, type=str, help="xxx.yaml")
args = parser.parse_args()
with open(args.configs_file, 'r') as f:
for key, value in Namespace(yaml.load(f, Loader=yaml.FullLoader)).__dict__.items():
vars(args)[key] = value
set_deterministic(args.seed)
# vars(args)['aug_kwargs'] = {
# 'name': args.model.name
# }
vars(args)['dataset_kwargs'] = {
'dataset': args.dataset.name,
'data_dir': args.dataset.data_dir,
'data_format': args.dataset.data_format
}
vars(args)['dataloader_kwargs'] = {
'drop_last': True,
'pin_memory': True,
'num_workers': args.dataset.num_workers,
}
vars(args)['train_kwargs'] = {
'lr': args.train.lr,
'iterations': args.train.iterations,
'batch': args.train.batch,
'weight_decay': args.train.optimizer.weight_decay
}
# vars(args)['eval_kwargs'] = {
# 'batch': args.checkpoint.checkpoint_path
# }
vars(args)['checkpoint_kwargs'] = {
'resume': args.checkpoint.resume,
'checkpoint_path': args.checkpoint.checkpoint_path
}
return args