forked from eriklindernoren/ML-From-Scratch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapriori.py
190 lines (165 loc) · 7.72 KB
/
apriori.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from __future__ import division, print_function
import numpy as np
import itertools
class Rule():
def __init__(self, antecedent, concequent, confidence, support):
self.antecedent = antecedent
self.concequent = concequent
self.confidence = confidence
self.support = support
class Apriori():
"""A method for determining frequent itemsets in a transactional database and
also for generating rules for those itemsets.
Parameters:
-----------
min_sup: float
The minimum fraction of transactions an itemets needs to
occur in to be deemed frequent
min_conf: float:
The minimum fraction of times the antecedent needs to imply
the concequent to justify rule
"""
def __init__(self, min_sup=0.3, min_conf=0.81):
self.min_sup = min_sup
self.min_conf = min_conf
self.freq_itemsets = None # List of freqeuent itemsets
self.transactions = None # List of transactions
def _calculate_support(self, itemset):
count = 0
for transaction in self.transactions:
if self._transaction_contains_items(transaction, itemset):
count += 1
support = count / len(self.transactions)
return support
def _get_frequent_itemsets(self, candidates):
""" Prunes the candidates that are not frequent => returns list with
only frequent itemsets """
frequent = []
# Find frequent items
for itemset in candidates:
support = self._calculate_support(itemset)
if support >= self.min_sup:
frequent.append(itemset)
return frequent
def _has_infrequent_itemsets(self, candidate):
""" True or false depending on the candidate has any
subset with size k - 1 that is not in the frequent itemset """
k = len(candidate)
# Find all combinations of size k-1 in candidate
# E.g [1,2,3] => [[1,2],[1,3],[2,3]]
subsets = list(itertools.combinations(candidate, k - 1))
for t in subsets:
# t - is tuple. If size == 1 get the element
subset = list(t) if len(t) > 1 else t[0]
if not subset in self.freq_itemsets[-1]:
return True
return False
def _generate_candidates(self, freq_itemset):
""" Joins the elements in the frequent itemset and prunes
resulting sets if they contain subsets that have been determined
to be infrequent. """
candidates = []
for itemset1 in freq_itemset:
for itemset2 in freq_itemset:
# Valid if every element but the last are the same
# and the last element in itemset1 is smaller than the last
# in itemset2
valid = False
single_item = isinstance(itemset1, int)
if single_item and itemset1 < itemset2:
valid = True
elif not single_item and np.array_equal(itemset1[:-1], itemset2[:-1]) and itemset1[-1] < itemset2[-1]:
valid = True
if valid:
# JOIN: Add the last element in itemset2 to itemset1 to
# create a new candidate
if single_item:
candidate = [itemset1, itemset2]
else:
candidate = itemset1 + [itemset2[-1]]
# PRUNE: Check if any subset of candidate have been determined
# to be infrequent
infrequent = self._has_infrequent_itemsets(candidate)
if not infrequent:
candidates.append(candidate)
return candidates
def _transaction_contains_items(self, transaction, items):
""" True or false depending on each item in the itemset is
in the transaction """
# If items is in fact only one item
if isinstance(items, int):
return items in transaction
# Iterate through list of items and make sure that
# all items are in the transaction
for item in items:
if not item in transaction:
return False
return True
def find_frequent_itemsets(self, transactions):
""" Returns the set of frequent itemsets in the list of transactions """
self.transactions = transactions
# Get all unique items in the transactions
unique_items = set(item for transaction in self.transactions for item in transaction)
# Get the frequent items
self.freq_itemsets = [self._get_frequent_itemsets(unique_items)]
while(True):
# Generate new candidates from last added frequent itemsets
candidates = self._generate_candidates(self.freq_itemsets[-1])
# Get the frequent itemsets among those candidates
frequent_itemsets = self._get_frequent_itemsets(candidates)
# If there are no frequent itemsets we're done
if not frequent_itemsets:
break
# Add them to the total list of frequent itemsets and start over
self.freq_itemsets.append(frequent_itemsets)
# Flatten the array and return every frequent itemset
frequent_itemsets = [
itemset for sublist in self.freq_itemsets for itemset in sublist]
return frequent_itemsets
def _rules_from_itemset(self, initial_itemset, itemset):
""" Recursive function which returns the rules where confidence >= min_confidence
Starts with large itemset and recursively explores rules for subsets """
rules = []
k = len(itemset)
# Get all combinations of sub-itemsets of size k - 1 from itemset
# E.g [1,2,3] => [[1,2],[1,3],[2,3]]
subsets = list(itertools.combinations(itemset, k - 1))
support = self._calculate_support(initial_itemset)
for antecedent in subsets:
# itertools.combinations returns tuples => convert to list
antecedent = list(antecedent)
antecedent_support = self._calculate_support(antecedent)
# Calculate the confidence as sup(A and B) / sup(B), if antecedent
# is B in an itemset of A and B
confidence = float("{0:.2f}".format(support / antecedent_support))
if confidence >= self.min_conf:
# The concequent is the initial_itemset except for antecedent
concequent = [itemset for itemset in initial_itemset if not itemset in antecedent]
# If single item => get item
if len(antecedent) == 1:
antecedent = antecedent[0]
if len(concequent) == 1:
concequent = concequent[0]
# Create new rule
rule = Rule(
antecedent=antecedent,
concequent=concequent,
confidence=confidence,
support=support)
rules.append(rule)
# If there are subsets that could result in rules
# recursively add rules from subsets
if k - 1 > 1:
rules += self._rules_from_itemset(initial_itemset, antecedent)
return rules
def generate_rules(self, transactions):
self.transactions = transactions
frequent_itemsets = self.find_frequent_itemsets(transactions)
# Only consider itemsets of size >= 2 items
frequent_itemsets = [itemset for itemset in frequent_itemsets if not isinstance(
itemset, int)]
rules = []
for itemset in frequent_itemsets:
rules += self._rules_from_itemset(itemset, itemset)
# Remove empty values
return rules