forked from eriklindernoren/ML-From-Scratch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenetic_algorithm.py
104 lines (84 loc) · 4.12 KB
/
genetic_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from __future__ import print_function, division
import string
import numpy as np
class GeneticAlgorithm():
"""An implementation of a Genetic Algorithm which will try to produce the user
specified target string.
Parameters:
-----------
target_string: string
The string which the GA should try to produce.
population_size: int
The number of individuals (possible solutions) in the population.
mutation_rate: float
The rate (or probability) of which the alleles (chars in this case) should be
randomly changed.
"""
def __init__(self, target_string, population_size, mutation_rate):
self.target = target_string
self.population_size = population_size
self.mutation_rate = mutation_rate
self.letters = [" "] + list(string.letters)
def _initialize(self):
""" Initialize population with random strings """
self.population = []
for _ in range(self.population_size):
# Select random letters as new individual
individual = "".join(np.random.choice(self.letters, size=len(self.target)))
self.population.append(individual)
def _calculate_fitness(self):
""" Calculates the fitness of each individual in the population """
population_fitness = []
for individual in self.population:
# Calculate loss as the alphabetical distance between
# the characters in the individual and the target string
loss = 0
for i in range(len(individual)):
letter_i1 = self.letters.index(individual[i])
letter_i2 = self.letters.index(self.target[i])
loss += abs(letter_i1 - letter_i2)
fitness = 1 / (loss + 1e-6)
population_fitness.append(fitness)
return population_fitness
def _mutate(self, individual):
""" Randomly change the individual's characters with probability
self.mutation_rate """
individual = list(individual)
for j in range(len(individual)):
# Make change with probability mutation_rate
if np.random.random() < self.mutation_rate:
individual[j] = np.random.choice(self.letters)
# Return mutated individual as string
return "".join(individual)
def _crossover(self, parent1, parent2):
""" Create children from parents by crossover """
# Select random crossover point
cross_i = np.random.randint(0, len(parent1))
child1 = parent1[:cross_i] + parent2[cross_i:]
child2 = parent2[:cross_i] + parent1[cross_i:]
return child1, child2
def run(self, iterations):
# Initialize new population
self._initialize()
for epoch in range(iterations):
population_fitness = self._calculate_fitness()
fittest_individual = self.population[np.argmax(population_fitness)]
highest_fitness = max(population_fitness)
# If we have found individual which matches the target => Done
if fittest_individual == self.target:
break
# Set the probability that the individual should be selected as a parent
# proportionate to the individual's fitness.
parent_probabilities = [fitness / sum(population_fitness) for fitness in population_fitness]
# Determine the next generation
new_population = []
for i in np.arange(0, self.population_size, 2):
# Select two parents randomly according to probabilities
parent1, parent2 = np.random.choice(self.population, size=2, p=parent_probabilities, replace=False)
# Perform crossover to produce offspring
child1, child2 = self._crossover(parent1, parent2)
# Save mutated offspring for next generation
new_population += [self._mutate(child1), self._mutate(child2)]
print ("[%d Closest Candidate: '%s', Fitness: %.2f]" % (epoch, fittest_individual, highest_fitness))
self.population = new_population
print ("[%d Answer: '%s']" % (epoch, fittest_individual))