forked from shuwen-liu-ox/INDIGO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
executable file
·160 lines (122 loc) · 5.99 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import numpy as np
import os
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from utils.utils_test import encoding_test
from utils.accuracy import compute_accuracy_for_test
from GNN.model import GCN
import time
#parse the argument
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, required=True,
help='Name of dataset')
parser.add_argument('--model_dir', type=str, required=True,
help='Directory name where models are saved')
parser.add_argument('--model_name', type=str, required=True,
help='Name of testing model')
parser.add_argument('--num_runs', type=int, default=10,
help='Number of testing runs')
parser.add_argument('--hidden', type=int, default=64,
help='Dimension of hidden vectors')
parser.add_argument('--dropout', type=float, default=0.5,
help='Dropout rate (will not been used in testing)')
parser.add_argument('--print', action='store_true',
help='To print the predicted triples to a file')
args = parser.parse_args()
#encoding the data
train_dataset = args.dataset
test_dataset = args.dataset
acc_list = []
precision_list = []
recall_list = []
f1_list = []
false_positive_rate_list = []
false_negative_rate_list = []
roc_auc_list = []
auc_pr_list = []
r_mr_list = []
r_mrr_list = []
r_hits1_list = []
r_hits3_list = []
r_hits10_list = []
for run in range(args.num_runs):
adj, features, labels, masks, num_type, num_relation, constants, relations, types, pairs, hits_true, r_hits_candidates = encoding_test(run, train_dataset, test_dataset)
#define the Model
model = GCN(nfeat=features.shape[1],
nhid = args.hidden,
nclass=labels.shape[1],
dropout=args.dropout)
model_path = "models/{}".format(args.model_dir)
#load the model
model.load_state_dict(torch.load("{}/{}.pkl".format(model_path, args.model_name)))
"""test the model"""
model.eval()
output_test = model(features, adj)
output_test_accuracy = output_test.clone()
if args.print:
f_test = open("predictions_{}.txt".format(args.dataset), "w+")
for p_id in range(len(pairs)):
for r_id in range(num_type + 2 * num_relation ):
if masks[p_id][r_id] ==1:
if r_id < num_type:
f_test.write(constants[pairs[p_id][0]])
f_test.write("\t")
f_test.write("<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>")
f_test.write("\t")
f_test.write(types[r_id])
elif r_id >= num_type and r_id < num_type+num_relation:
f_test.write(constants[pairs[p_id][0]])
f_test.write("\t")
f_test.write(relations[r_id - num_type])
f_test.write("\t")
f_test.write(constants[pairs[p_id][1]])
else:
f_test.write(constants[pairs[p_id][1]])
f_test.write("\t")
f_test.write(relations[r_id - num_type - num_relation])
f_test.write("\t")
f_test.write(constants[pairs[p_id][0]])
f_test.write("\t")
f_test.write(str(output_test_accuracy[p_id][r_id].item()))
f_test.write("\t")
f_test.write(str(labels[p_id][r_id].item()))
f_test.write("\n")
f_test.close()
print("Predicted triples saved in file predictions_{}.txt".format(args.dataset))
output_test = torch.mul(output_test, masks)
loss = nn.BCELoss()
loss_test = loss(output_test, labels)
score_threshold = 0.5
acc_test, precision_test, recall_test, f1_test, false_positive_rate_test, false_negative_rate_test, roc_auc_test, auc_pr_test, r_mr_test, r_mrr_test, r_hits1_test, r_hits3_test, r_hits10_test = compute_accuracy_for_test(output_test_accuracy, labels, masks, score_threshold, num_relation, num_type, hits_true, r_hits_candidates)
acc_list.append(acc_test.item())
precision_list.append(precision_test.item())
recall_list.append(recall_test.item())
f1_list.append(f1_test.item())
false_positive_rate_list.append(false_positive_rate_test.item())
false_negative_rate_list.append(false_negative_rate_test.item())
roc_auc_list.append(roc_auc_test)
auc_pr_list.append(auc_pr_test)
r_mr_list.append(r_mr_test)
r_mrr_list.append(r_mrr_test)
r_hits1_list.append(r_hits1_test)
r_hits3_list.append(r_hits3_test)
r_hits10_list.append(r_hits10_test)
print('------------Classification-------')
print('accuracy: {:.4f}, var:{:.4f}\n'.format(np.mean(acc_list), np.var(acc_list)),
'precision: {:.4f}, var:{:.4f}\n'.format(np.mean(precision_list), np.var(precision_list)),
'recall: {:.4f}, var:{:.4f}\n'.format(np.mean(recall_list), np.var(recall_list)),
'f1: {:.4f}, var:{:.4f}\n'.format(np.mean(f1_list), np.var(f1_list)),
'false_positive_rate: {:.4f}, var:{:.4f}\n'.format(np.mean(false_positive_rate_list), np.var(false_positive_rate_list)),
'false_negative_rate: {:.4f}, var:{:.4f}\n'.format(np.mean(false_negative_rate_list), np.var(false_negative_rate_list)),
'roc_auc: {:.4f}, var:{:.4f}\n'.format(np.mean(roc_auc_list), np.var(roc_auc_list)),
'auc_pr: {:.4f}, var:{:.4f}\n'.format(np.mean(auc_pr_list), np.var(auc_pr_list)))
print('------------Ranking--------------')
print(
'r-MR: {:.4f}, var:{:.4f}\n'.format(np.mean(r_mr_list), np.var(r_mr_list)),
'r-MRR: {:.4f}, var:{:.4f}\n'.format(np.mean(r_mrr_list), np.var(r_mrr_list)),
'r-HITS@1: {:.4f}, var:{:.4f}\n'.format(np.mean(r_hits1_list), np.var(r_hits1_list)),
'r-HITS@3: {:.4f}, var:{:.4f}\n'.format(np.mean(r_hits3_list), np.var(r_hits3_list)),
'r-HITS@10: {:.4f}, var:{:.4f}\n'.format(np.mean(r_hits10_list), np.var(r_hits10_list)),
)