forked from Om-Kamath/stock-analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweb.py
114 lines (96 loc) · 3.78 KB
/
web.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import yfinance as yf
import pandas as pd
import streamlit as st
import plotly.express as px
import pdfkit as pdf
from jinja2 import Environment, select_autoescape, FileSystemLoader
## Setting the page title and favicon
st.set_page_config(
page_title="ticktick.boom",
page_icon="💣",
)
@st.experimental_memo
## FETCHING HISTORIC DATA
def historic_data(stock):
ticker = yf.Ticker(stock)
hist = ticker.history(period="max")
return hist
@st.experimental_memo
## FETCHING COMPANY INFO
def price_info(stock):
ticker = yf.Ticker(stock)
return ticker.info
## MAIN APP
st.title("ticktick.boom") # Title of app
c1 = st.container() # Main container
s = c1.text_input("Enter Stock Ticker", placeholder="Eg. AAPL") # Ticker Input
btn = c1.button("Enter") # Submit button
## SETTING THE FILE PATH FOR PDF TEMPLATE
env = Environment(loader=FileSystemLoader("."), autoescape=select_autoescape())
template = env.get_template("template.html")
## APP LOADING
with st.spinner("Crunching the data..."):
try:
if btn:
df = historic_data(s)
info = price_info(s)
# Creating 3 columns (Details)
col1, col2, col3 = c1.columns(3)
# Adding metric components to each column
with col1:
st.metric(
label=info["shortName"],
value="%.2f" % info["currentPrice"],
delta="%.2f" % (info["currentPrice"] - info["previousClose"]),
)
with col2:
st.metric(label="Today's High", value="%.2f" % info["dayHigh"])
with col3:
st.metric(label="Today's Low", value="%.2f" % info["dayLow"])
# Lower columns (Performance Indicators)
col6, col7, col8 = c1.columns(3)
# Adding metric components to each column
with col6:
st.metric(
label="Revenue Growth (yoy)",
value="%.2f" % (info["revenueGrowth"]*100)+"%"
)
with col7:
st.metric(label="PE Ratio", value="%.2f" % info["trailingPE"])
with col8:
st.metric(label="PB Ratio", value="%.2f" % info["priceToBook"])
# Generating Chart
close_px = df["Close"]
mavg = close_px.rolling(window=100).mean() # Calculating Moving Average of Stock Close
df["Mavg"] = mavg
df["datetime"] = pd.to_datetime(df.index)
fig = px.line(df, x="datetime",y=["Close","Mavg"]) # Using Plotly Express to create line chart
c1.plotly_chart(fig,use_container_width=True)
# Adding Company Business Details
c1.markdown("### Company Info")
c1.write(info["longBusinessSummary"])
# Generating PDF using the template
html = template.render(
shortName=info["shortName"],
currentPrice=info["currentPrice"],
dayHigh=info["dayHigh"],
dayLow=info["dayLow"],
revenueGrowth=info["revenueGrowth"]*100,
trailingPE=info["trailingPE"],
priceToBook=info["priceToBook"],
longBusinessSummary=info["longBusinessSummary"],
)
pdf = pdf.from_string(html, False)
c1.download_button(label="Download",data=pdf,file_name="stock.pdf", mime="application/octet-stream")
except Exception as e:
c1.markdown(
'<h3 style="color:red">Incorrect ticker.</h3>', unsafe_allow_html=True
)
print(e)
## HIDING THE FOOTER
hide_streamlit_style = """
<style>
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)