-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathlaploss.py
62 lines (53 loc) · 2.07 KB
/
laploss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import sys
import numpy as np
import tensorflow as tf
import PIL.Image
def gauss_kernel(size=5, sigma=1.0):
grid = np.float32(np.mgrid[0:size,0:size].T)
gaussian = lambda x: np.exp((x - size//2)**2/(-2*sigma**2))**2
kernel = np.sum(gaussian(grid), axis=2)
kernel /= np.sum(kernel)
return kernel
def conv_gauss(t_input, stride=1, k_size=5, sigma=1.6, repeats=1):
t_kernel = tf.reshape(tf.constant(gauss_kernel(size=k_size, sigma=sigma), tf.float32),
[k_size, k_size, 1, 1])
t_kernel3 = tf.concat([t_kernel]*t_input.get_shape()[3], axis=2)
t_result = t_input
for r in range(repeats):
t_result = tf.nn.depthwise_conv2d(t_result, t_kernel3,
strides=[1, stride, stride, 1], padding='SAME')
return t_result
def make_laplacian_pyramid(t_img, max_levels):
t_pyr = []
current = t_img
for level in range(max_levels):
t_gauss = conv_gauss(current, stride=1, k_size=5, sigma=2.0)
t_diff = current - t_gauss
t_pyr.append(t_diff)
current = tf.nn.avg_pool(t_gauss, [1,2,2,1], [1,2,2,1], 'VALID')
t_pyr.append(current)
return t_pyr
def laploss(t_img1, t_img2, max_levels=3):
t_pyr1 = make_laplacian_pyramid(t_img1, max_levels)
t_pyr2 = make_laplacian_pyramid(t_img2, max_levels)
t_losses = [tf.norm(a-b,ord=1)/tf.size(a, out_type=tf.float32) for a,b in zip(t_pyr1, t_pyr2)]
t_loss = tf.reduce_sum(t_losses)*tf.shape(t_img1, out_type=tf.float32)[0]
return t_loss
if __name__ == "__main__":
assert len(sys.argv) == 3
## Test it:
BATCH_SIZE = 2
img1 = np.float32(PIL.Image.open(sys.argv[1]))/128.0 - 1.0
img2 = np.float32(PIL.Image.open(sys.argv[2]))/128.0 - 1.0
img1 = np.stack([img1]*BATCH_SIZE)
img2 = np.stack([img2]*BATCH_SIZE)
# Pretend it's two batches of 1 as [B,Y,X,C]
t_img1 = tf.constant(img1)
t_img2 = tf.constant(img2)
t_loss = laploss(t_img1, t_img2)
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
t_loss = laploss(t_img1, t_img2)
loss = sess.run(t_loss)
loss_l1 = np.sum(np.abs(img1-img2))/np.prod(list(img1.shape)[1:])
print "LapLoss, L1: ", loss, loss_l1