forked from tanmayc07/WWCodeHackathon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
103 lines (76 loc) · 4.03 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import streamlit as st
import pandas as pd
import numpy as np
import pickle
from sklearn.preprocessing import MinMaxScaler
model = pickle.load(open('model/extra_tree_classifier.pkl', 'rb'))
def predict_input(parent_protein_id, protein_seq, start_position, end_position, peptide_seq, chou_fasman, emini, kolaskar_tongaonkar, parker, isoelectric_point, aromaticity, hydrophobicity, stability):
array = np.array([[parent_protein_id, protein_seq, start_position, end_position, peptide_seq, chou_fasman,
emini, kolaskar_tongaonkar, parker, isoelectric_point, aromaticity, hydrophobicity, stability]])
array = pd.DataFrame(array)
array[0] = array[0].astype('category').cat.codes
array[1] = array[1].astype('category').cat.codes
array[4] = array[4].astype('category').cat.codes
minmax_scaler = MinMaxScaler()
input = minmax_scaler.fit_transform((array))
# prediction = model.predict_proba(input)
prediction = model.predict(input)
# print(prediction)
return int(prediction)
def main():
html_temp = """
<div style="padding:10px;">
<h2>COVID-19/SARS B-cell Epitope Prediction</h2>
<h3>Mission: Predictable A Virtual Machine Learning Hackathon to Battle Covid-19</h3>
<h3>A simple web app for epitope prediction used in vaccine development</h3>
</div>
"""
st.markdown(html_temp, unsafe_allow_html=True)
st.image("./data/covid.jpg", caption="Coronavirus image",
use_column_width=True)
st.sidebar.subheader("Enter the values")
protein_id = st.sidebar.text_input("Enter the Protein ID: eg. A1JIP3")
protein_seq = st.sidebar.text_input(
"Enter the Protein Sequence: eg. AAQKRPSQRSKYLASASTMDHARHGFLPRHRDTGILDSLGRFFGSDRGAPKRGSGKDGHHAARTTHYGSLPQKAQGHRPQDENPVVHFFKNIVTPRTPPPSQGKGRGLSLSRFSWGAEGQKPGFGYGGRASDYKSAHKGLKGHDAQGTLSKIFKLGGRDSRSGSPMARR")
start_position = st.sidebar.slider(
"Enter the start position:", min_value=1, max_value=3079, value=1, step=1)
end_position = st.sidebar.slider(
"Enter the end position:", min_value=6, max_value=3086, value=6, step=1)
peptide_seq = st.sidebar.text_input(
"Enter the peptide sequence: eg. YYVPLGTQYT")
chou_fasman = st.sidebar.number_input("Enter the chou fasman value:",
min_value=0.000, max_value=2.000, value=0.500)
emini = st.sidebar.number_input(
"Enter the emini value:", min_value=0.0, max_value=27.189)
kolaskar_tongaonkar = st.sidebar.number_input(
"Enter the Kolaskar Tongaonkar value:", min_value=0.500, max_value=1.300)
parker = st.sidebar.number_input(
"Enter the parker value:", min_value=-10.000, max_value=10.000)
isoelectric_point = st.sidebar.number_input(
"Enter the isoelectric point value:", min_value=3.00, max_value=13.00)
aromaticity = st.sidebar.number_input(
"Enter the aromaticity value:", min_value=0.00, max_value=0.1000)
hydrophobicity = st.sidebar.number_input(
"Enter the hydrophobicity value:", min_value=-2.000, max_value=1.3000)
stability = st.sidebar.number_input(
"Enter the stability value:", min_value=5.00, max_value=138.000)
safe_html = """
<div style="background-color:#F4D03F;padding:10px;">
<h2 style="color:white;text-align:center;">You are safe!!</h2>
</div>
"""
danger_html = """
<div style="background-color:#F08080;padding:10px">
<h2 style="color:black;text-align:center;">You might be in danger!!</h2>
</div>
"""
if st.sidebar.button("predict"):
output = predict_input(protein_id, protein_seq, start_position, end_position, peptide_seq, chou_fasman,
emini, kolaskar_tongaonkar, parker, isoelectric_point, aromaticity, hydrophobicity, stability)
st.success(f"The predicted class is {output}")
if output == 1:
st.markdown(danger_html, unsafe_allow_html=True)
else:
st.markdown(safe_html, unsafe_allow_html=True)
if __name__ == '__main__':
main()