-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_filter.py
executable file
·114 lines (103 loc) · 3.3 KB
/
test_filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#!/usr/bin/env python
import numpy as np
import misc
import data_assimilation as DA
import config as p
import matplotlib.pyplot as plt
from scipy.fftpack import fft
plt.switch_backend('Agg')
plt.figure(figsize=(12, 7))
# read in obs and prior ensemble
x = np.load("output/truth.npy")
xens = np.load("output/ensemble_forecast.npy")[:, 0:20, :]
nx, nens, nt = xens.shape
tt = 8
xt = x[:, tt]
xb = xens[:, :, tt]
obs = np.load("output/obs.npy")
yo = obs[:, tt]
ROI = 5
xa = DA.EnKF(xb, p.obs_ind, yo, p.obs_err, ROI, alpha=0.0)
#xo = np.random.normal(0, 1, (nx, nens))
#R = misc.error_covariance(xo)
R = np.eye(nx)
# print(R)
##loalization
if ROI <= 0:
rho = np.ones((nx, nx))
else:
ii, jj = np.mgrid[0:nx, 0:nx]
dist = np.sqrt((ii - jj)**2)
dist = np.minimum(dist, nx - dist)
rho = dist.copy()
for i in range(nx):
rho[:, i] = DA.GC_local_func(dist[:, i], ROI)
###test covariance relation
###1. see if SVD of ensemble perturbation can give unique singular
###values to suffice La^-2 = Lb^-2 + Lo^-2
###ISSUE: the orthogonal basis are not shared between R and P
#xop = misc.ens_pert(xo)
#u, Lo, v = np.linalg.svd(xop)
#xbp = misc.ens_pert(xb)
#u, Lb, v = np.linalg.svd(xbp)
#xap = misc.ens_pert(xa)
#u, La, v = np.linalg.svd(xap)
#Pb = np.matmul(u, np.matmul(np.diag(Lb**2), u.T))/(nens-1)
#Pa = np.matmul(u, np.matmul(np.diag(La**2), u.T))/(nens-1)
#La1 = (Lb**-2 + Lo**-2)**-0.5
#Pa1 = np.matmul(u, np.matmul(np.diag(La1**2), u.T))/(nens-1)
#ax = plt.subplot(223)
#ax.semilogy(Lb**2, 'k')
#ax.semilogy(La**2, 'r')
#ax.semilogy(La1**2, 'g')
# ax.plot(np.ones(nx)**2, 'g')
# ax = plt.subplot(222)
# ax.plot(u[0, :])
# c = ax.contourf(u, cmap='seismic')
# plt.colorbar(c)
####2. see if eigenvalue decomposition of P, R can provide this
####relationship: wa^-1 = wb^-1 + wo^-1, with shared eigenvectors v.
####when localization is applied, the eigenvectors for Pa and Pb can be different
Pb = misc.error_covariance(xb) * rho
Pa = misc.error_covariance(xa) * rho
wb, v = np.linalg.eig(Pb)
wa, v = np.linalg.eig(Pa)
wo = np.ones(nx)
wa1 = np.real((wo**-1 + wb**-1)**-1)
#print(wb)
#print(wa)
#print(wa1)
Pa1 = np.real(np.dot(v, np.dot(np.diag(wa1), v.T)))
Pa2 = np.linalg.inv(np.linalg.inv(Pb) + np.linalg.inv(R))
####compare trace of P
print(np.sqrt(np.trace(Pb)/nx))
print(np.sqrt(np.trace(Pa)/nx))
print(np.sqrt(np.trace(Pa1)/nx))
print(np.sqrt(np.trace(Pa2)/nx))
###compare P from different estimates
ax = plt.subplot(231)
c = ax.contourf(Pb, np.arange(-2, 2, 0.1), cmap='seismic')
ax.set_title(r'$\rho \circ P_b = V \Lambda_b V^T$')
ax = plt.subplot(232)
c = ax.contourf(Pa, np.arange(-2, 2, 0.1), cmap='seismic')
ax.set_title(r'$\rho \circ P_a = V \Lambda_a V^T$')
ax = plt.subplot(234)
c = ax.contourf(Pa1, np.arange(-2, 2, 0.1), cmap='seismic')
ax.set_title(r'$V [\Lambda_b^{-1}+\Lambda_o^{-1}]^{-1} V^T$')
ax = plt.subplot(235)
c = ax.contourf(Pa2, np.arange(-2, 2, 0.1), cmap='seismic')
ax.set_title(r'$[(\rho \circ P_b)^{-1}+R^{-1}]^{-1}$')
###plot eigenvalue spectrum
ax = plt.subplot(233)
ax.semilogy(wb, 'k', label=r'$\Lambda_b$')
ax.semilogy(wa, 'r', label=r'$\Lambda_a$')
ax.semilogy(wa1, 'g', label=r'$(\Lambda_b^{-1}+\Lambda_o^{-1})^{-1}$')
ax.legend(fontsize=12)
###check ensemble in state space
# ax = plt.subplot(223)
# ax.plot(xb, 'c')
# ax.plot(xt, 'k')
# ax = plt.subplot(224)
# ax.plot(xa, 'c')
# ax.plot(xt, 'k')
plt.savefig('1.pdf')