-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_position_obs.py
59 lines (49 loc) · 1.95 KB
/
run_position_obs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#!/usr/bin/env python
import numpy as np
import sys
import os
from rankine_vortex import *
from obs_def import *
from data_assimilation import *
from multiscale import *
from config import *
realize = int(sys.argv[1])
##truth
Xt = gen_vortex(ni, nj, nv, Vmax, Rmw)
np.random.seed(realize)
dirname = 'position_obs/{:04d}'.format(realize)
if not os.path.exists(outdir+dirname):
os.makedirs(outdir+dirname)
###Observation
Ymask = np.ones(2)
Yloc = np.zeros((3, 2))
Yloc[2, :] = np.array([-1, -1])
obs_err_std = 0.5
if os.path.isfile(outdir+dirname+'/Yo.npy'):
Yo = np.load(outdir+dirname+'/Yo.npy')
else:
Yo = vortex_center(Xt) + obs_err_std * np.random.normal(0, 1, 2)
np.save(outdir+dirname+'/Yo.npy', Yo)
for loc_sprd in (1, 2, 3, 4, 5):
loc_bias = 0
nens = 20 ##500 for PF
scenario = "/Lbias{}/Lsprd{}/N{}".format(loc_bias, loc_sprd, nens)
if not os.path.exists(outdir+dirname+scenario):
os.makedirs(outdir+dirname+scenario)
##Prior ensemble
Xb = np.zeros((ni, nj, nv, nens))
for m in range(nens):
Xb[:, :, :, m] = gen_vortex(ni, nj, nv, Vmax, Rmw, loc_sprd, loc_bias)
if not os.path.isfile(outdir+dirname+scenario+'/NoDA.npy'):
err = diagnose(Xb, Xt)
np.save(outdir+dirname+scenario+'/NoDA.npy', err)
##Run filter
for ns in (1, 2, 3, 4, 5, 6, 7):
if not os.path.isfile(outdir+dirname+scenario+'/EnSRF_s{}.npy'.format(ns)):
Xa = filter_update(Xb, Yo, Ymask, Yloc, 'EnSRF', obs_err_std*np.ones(ns), np.zeros(ns), np.ones(ns), get_krange(ns), (1,), run_alignment=True)
err = diagnose(Xa, Xt)
np.save(outdir+dirname+scenario+'/EnSRF_s{}.npy'.format(ns), err)
if not os.path.isfile(outdir+dirname+scenario+'/PF.npy'):
Xa = filter_update(Xb, Yo, Ymask, Yloc, 'PF', obs_err_std*np.ones(1), np.zeros(1), np.ones(1), get_krange(1), (1,), run_alignment=False)
err = diagnose(Xa, Xt)
np.save(outdir+dirname+scenario+'/PF.npy', err)