-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_single_wind_obs.py
64 lines (55 loc) · 2.45 KB
/
run_single_wind_obs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/usr/bin/env python
import numpy as np
import sys
import os
from rankine_vortex import *
from obs_def import *
from data_assimilation import *
from multiscale import *
from config import *
realize = int(sys.argv[1])
##truth
Xt = gen_vortex(ni, nj, nv, Vmax, Rmw)
np.random.seed(realize)
dirname = 'single_wind_obs/{:04d}'.format(realize)
if not os.path.exists(outdir+dirname):
os.makedirs(outdir+dirname)
###Observation
Ymask = np.ones(2)
if os.path.isfile(outdir+dirname+'/Yo.npy'):
Yo = np.load(outdir+dirname+'/Yo.npy')
Yloc = np.load(outdir+dirname+'/Yloc.npy')
else:
Yloc = np.zeros((3, 2))
obs_r = np.random.uniform(0, 10)*np.ones(2)
obs_th = np.random.uniform(0, 360)*np.pi/180*np.ones(2)
Yloc[0, :] = 0.5*ni + obs_r*np.sin(obs_th)
Yloc[1, :] = 0.5*nj + obs_r*np.cos(obs_th)
Yloc[2, :] = np.array([0, 1])
Yo = obs_interp2d(Xt, Yloc) + obs_err_std * np.random.normal(0, 1, 2)
np.save(outdir+dirname+'/Yo.npy', Yo)
np.save(outdir+dirname+'/Yloc.npy', Yloc)
for loc_sprd in (1, 2, 3, 4, 5):
for loc_bias in (0,):
for nens in (20,): #500 for PF
scenario = "/Lbias{}/Lsprd{}/N{}".format(loc_bias, loc_sprd, nens)
if not os.path.exists(outdir+dirname+scenario):
os.makedirs(outdir+dirname+scenario)
##Prior ensemble
Xb = np.zeros((ni, nj, nv, nens))
for m in range(nens):
Xb[:, :, :, m] = gen_vortex(ni, nj, nv, Vmax, Rmw, loc_sprd, loc_bias)
if not os.path.isfile(outdir+dirname+scenario+'/NoDA.npy'):
err = diagnose(Xb, Xt)
np.save(outdir+dirname+scenario+'/NoDA.npy', err)
##Run filter with MSA:
for ns in (1, 2, 3, 4, 5, 6, 7):
if not os.path.isfile(outdir+dirname+scenario+'/EnSRF_s{}.npy'.format(ns)):
Xa = filter_update(Xb, Yo, Ymask, Yloc, 'EnSRF', obs_err_std*np.ones(ns), np.zeros(ns), np.ones(ns), get_krange(ns), (1,), run_alignment=True)
err = diagnose(Xa, Xt)
np.save(outdir+dirname+scenario+'/EnSRF_s{}.npy'.format(ns), err)
##particle filter solution
if not os.path.isfile(outdir+dirname+scenario+'/PF.npy'):
Xa = filter_update(Xb, Yo, Ymask, Yloc, 'PF', obs_err_std*np.ones(1), np.zeros(1), np.ones(1), get_krange(1), (1,), run_alignment=False)
err = diagnose(Xa, Xt)
np.save(outdir+dirname+scenario+'/PF.npy', err)