-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathfreeze_graph.py
86 lines (67 loc) · 3.16 KB
/
freeze_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# coding: utf-8
# saver.save()で保存したcheckpointのmeta(NNモデル)と値を読み込み、学習値込みのNNモデルをmodel.pbに保存する
import os
import tensorflow as tf
from tensorflow.python.framework import graph_util
MODEL_DIR=os.path.abspath(os.path.dirname(__file__))+"/output"
FROZEN_MODEL_NAME="frozen_inference_graph.pb"
OUTPUT_NODE_NAMES="image_tensor,detection_boxes,detection_scores,detection_classes,num_detections"
CLEAR_DEVICES=True
def print_graph_operations(graph):
# print operations
print("----- operations in graph -----")
for op in graph.get_operations():
print("{} {}".format(op.name,op.outputs))
def print_graph_nodes(graph_def):
# print nodes
print("----- nodes in graph_def -----")
for node in graph_def.node:
print(node)
def freeze_graph():
# Graphを初期化する(実行エラーで古いGraphが残っている場合に消す)
tf.reset_default_graph()
checkpoint = tf.train.get_checkpoint_state(MODEL_DIR)
if checkpoint:
# checkpointファイルから最後に保存したモデルへのパスを取得する
last_model = checkpoint.model_checkpoint_path
print("load {}".format(last_model))
# pbファイル名を設定する
# We precise the file fullname of our freezed graph
absolute_model_dir = "/".join(last_model.split('/')[:-1])
frozen_model = absolute_model_dir + "/" + FROZEN_MODEL_NAME
# Graphを読み込む
# We import the meta graph and retrieve a Saver
saver = tf.train.import_meta_graph(last_model + '.meta', clear_devices=CLEAR_DEVICES)
# We retrieve the protobuf graph definition
graph = tf.get_default_graph()
graph_def = graph.as_graph_def()
# print operations
print_graph_operations(graph)
# print nodes
#print_graph_nodes(graph_def)
else:
# checkpointファイルが見つからない
print("cannot find checkpoint.")
return
# We start a session and restore the graph weights
with tf.Session() as sess:
# 学習済みモデルの値を読み込む
saver.restore(sess, last_model)
# We use a built-in TF helper to export variables to constants
output_graph_def = graph_util.convert_variables_to_constants(
sess, # The session is used to retrieve the weights
graph_def, # The graph_def is used to retrieve the nodes
OUTPUT_NODE_NAMES.split(",") # The output node names are used to select the usefull nodes
)
# pbファイルに保存する
''' バイナリならこれでもよい
# Finally we serialize and dump the output graph to the filesystem
with tf.gfile.GFile(frozen_model, "wb") as f:
f.write(output_graph_def.SerializeToString())
print("%d ops in the final graph." % len(output_graph_def.node))
'''
''' バイナリ、テキストどちらも対応 '''
tf.train.write_graph(output_graph_def, MODEL_DIR,
FROZEN_MODEL_NAME, as_text=False)
print("%d ops in the final graph." % len(output_graph_def.node))
freeze_graph()