-
Notifications
You must be signed in to change notification settings - Fork 153
/
Copy pathKNN.py
50 lines (44 loc) · 2.25 KB
/
KNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
'''This is a K Nearest Neighbours algorithm with k=3. This model is trained on the MNIST
handwritten digits dataset with 50,000 images for the training set and 10,000 for testing.
Then the model is saved using pickle as a knn.sav file '''
import numpy as np
from sklearn import datasets
from sklearn.metrics import classification_report
from sklearn.neighbors import KNeighborsClassifier
import pickle
k = 3
class KNN:
def __init__(self, k):
self.mnist = datasets.fetch_openml('mnist_784', data_home='mnist_dataset/')
self.data, self.target = self.mnist.data, self.mnist.target
# Make an array of indices the size of MNIST to use for making the data sets.
# This array is in random order, so we can use it to scramble up the MNIST data
self.indx = np.random.choice(len(self.target), 70000, replace=False)
# Initialising the classifier
self.classifier = KNeighborsClassifier(n_neighbors=k)
# method for building the datasets to test with
def mk_dataset(self, size):
"""makes a dataset of size "size", and returns that datasets images and targets
This is used to make the dataset that will be stored by a model and used in
experimenting with different stored dataset sizes
"""
train_img = [self.data[i] for i in self.indx[:size]]
train_img = np.array(train_img)
train_target = [self.target[i] for i in self.indx[:size]]
train_target = np.array(train_target)
return train_img, train_target
def skl_knn(self):
"""k: number of neighbors to use in classification
test_data: the data/targets used to test the classifier
stored_data: the data/targets used to classify the test_data
"""
fifty_x, fifty_y = self.mk_dataset(50000)
test_img = [self.data[i] for i in self.indx[60000:70000]]
test_img1 = np.array(test_img)
test_target = [self.target[i] for i in self.indx[60000:70000]]
test_target1 = np.array(test_target)
self.classifier.fit(fifty_x, fifty_y)
y_pred = self.classifier.predict(test_img1)
pickle.dump(self.classifier, open('knn.sav', 'wb'))
print(classification_report(test_target1, y_pred))
print("KNN Classifier model saved as knn.sav!")