-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcs8850_14_factorization.html
985 lines (857 loc) · 45.2 KB
/
cs8850_14_factorization.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
<link href="css/fontawesome-free-6.2.1-web/css/all.css" rel="stylesheet">
<script src="lib/colorbrewer.v1.min.js" charset="utf-8"></script>
<script src="lib/colorStringStandalone.js" charset="utf-8"></script>
<script type="text/javascript" src="lib/jquery-2.2.4.min.js"></script>
<title>Advanced Machine Learning</title>
<meta name="description" content="CS8850 GSU class">
<meta name="author" content="Sergey M Plis">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<link rel="stylesheet" href="dist/reset.css">
<link rel="stylesheet" href="dist/reveal.css">
<!-- Code syntax highlighting -->
<link rel="stylesheet" href="plugin/highlight/monokai.css" id="highlight-theme">
<!-- <link rel="stylesheet" href="lib/css/zenburn.css"> -->
<link rel="stylesheet" href="css/custom.css">
<link rel="stylesheet" href="dist/theme/aml.css" id="theme">
<!-- Printing and PDF exports -->
<script>
var link = document.createElement( 'link' );
link.rel = 'stylesheet';
link.type = 'text/css';
link.href = window.location.search.match( /print-pdf/gi ) ? 'css/print/pdf.css' : 'css/print/paper.scss';
document.getElementsByTagName( 'head' )[0].appendChild( link );
</script>
</head>
<body>
<div class="reveal">
<!-- In between the <div="reveal"> and the <div class="slides">-->
<!-- <header style="position: absolute; top: 10px; left: 100px; z-index: 500; font-size:100px;background-color: rgba(0,0,0,0); text-align: center !important"></header> -->
<!-- In between the <div="reveal"> and the <div class="slides">-->
<!-- Any section element inside of this container is displayed as a slide -->
<div class="slides">
<section>
<section>
<p>
<h2>Advanced Machine Learning</h2>
<h3>14: Matrix Factorization</h3>
<p>
</section>
<section>
<h3>Outline for the lecture</h3>
<ul>
<li class="fragment roll-in"> What are we talking about
<li class="fragment roll-in"> Independent Component Analysis
<li class="fragment roll-in"> Nonnegative Matrix Factorization
<li class="fragment roll-in"> Dictionary Learning
<li class="fragment roll-in"> Autoencoders
<li class="fragment roll-in"> Take home points
</ul>
</section>
</section>
<!-- ------------------------------------------------------------------------- -->
<section>
<section>
<h2>One Shallow Model</h2>
</section>
<section>
<h3>Matrix Factorization in Linear Algebra</h3>
<ul style="list-style-type: none; padding: 0; margin: 0;">
<li class="fragment">
<img data-src="figures/CR_1.svg" alt="CR_1">
</li>
<li class="fragment">
<img data-src="figures/LU_2.svg" alt="LU_2">
</li>
<li class="fragment">
<img data-src="figures/QR_3.svg" alt="QR_3">
</li>
<li class="fragment">
<img data-src="figures/EIG_4.svg" alt="EIG_4">
</li>
<li class="fragment">
<img data-src="figures/SVD_5.svg" alt="SVD_5">
</li>
</ul>
<style>
.reveal section ul {
width: 100%;
max-width: 100%;
padding: 0;
margin: 0;
}
.reveal section ul li {
list-style-type: none;
margin: 10px 0;
}
.reveal section ul li img {
width: 100%;
max-width: 100%;
height: auto;
display: block;
}
</style>
<div class="slide-footer">
images from <a href="https://github.com/kenjihiranabe/The-Art-of-Linear-Algebra?tab=readme-ov-file">The Art of Linear Algebra</a>
</div>
</section>
<section>
<h3>Factorization can be viewed as a graph</h3>
<img style="border:0; box-shadow: 0px 0px 0px rgba(150, 150, 255, 1); " width="800" class="reveal"
src="figures/latent_variable_model.png" alt="RBM">
$\bm{V} = \bm{W}\bm{H}$
</section>
</section>
<!-- ------------------------------------------------------------------------- -->
<section>
<section>
<h2>Independent Component Analysis</h2>
</section>
<section>
<h1><i class="fa-solid fa-martini-glass-citrus"></i> Cocktail party!</h1>
</section>
<section>
<row>
<col30 class="fragment roll-in">
<h4>sources</h4>
<div style="display: flex; align-items: center; margin-bottom: 5px;">
<img src="figures/Bach.png" alt="Bach" style="width: 80px; height: 80px; margin-right: 5px; margin-top: -10px;">
<audio controls src="figures/cocktail/single_channel_Bach.mp3" style="height: 30px;"></audio>
</div>
<div style="display: flex; align-items: center; margin-bottom: 5px;">
<img src="figures/Bengio.png" alt="Bengio" style="width: 80px; height: 80px; margin-right: 5px; margin-top: -10px;">
<audio controls src="figures/cocktail/single_channel_Bengio.mp3" style="height: 30px;"></audio>
</div>
<div style="display: flex; align-items: center; margin-bottom: 5px;">
<img src="figures/lecun.png" alt="LeCun" style="width: 80px; height: 80px; margin-right: 5px; margin-top: -10px;">
<audio controls src="figures/cocktail/single_channel_LeCun.mp3" style="height: 30px;"></audio>
</div>
<div style="display: flex; align-items: center; margin-bottom: 5px;">
<img src="figures/Schmidhuber.png" alt="Schmidhuber" style="width: 80px; height: 80px; margin-right: 5px; margin-top: -10px;">
<audio controls src="figures/cocktail/single_channel_Schmidhuber.mp3" style="height: 30px;"></audio>
</div>
<div style="display: flex; align-items: center; margin-bottom: 5px;">
<img src="figures/Yudkowski.png" alt="Yudkowski" style="width: 80px; height: 80px; margin-right: 5px; margin-top: -10px;">
<audio controls src="figures/cocktail/single_channel_Yudkowski.mp3" style="height: 30px;"></audio>
</div>
<div style="display: flex; align-items: center; margin-bottom: 5px;">
<img src="figures/Hinton.png" alt="Hinton" style="width: 80px; height: 80px; margin-right: 5px; margin-top: -10px;">
<audio controls src="figures/cocktail/single_channel_Hinton.mp3" style="height: 30px;"></audio>
</div>
<div style="display: flex; align-items: center; margin-bottom: 5px;">
<img src="figures/Jazz.png" alt="Jazz" style="width: 80px; height: 80px; margin-right: 5px; margin-top: -10px;">
<audio controls src="figures/cocktail/single_channel_Jazz.mp3" style="height: 30px;"></audio>
</div>
</col30>
<col10>
</col10>
<col30 class="fragment roll-in">
<h4>linear mixtures</h4>
<img src="figures/godfatherAI.png" alt="father" style="width: 100%; margin-right: 5px;">
<div style="display: flex; align-items: center; margin-bottom: 5px;">
<audio controls src="figures/cocktail/mixture01.mp3" style="height: 30px; width: 100%;"></audio>
</div>
<div style="display: flex; align-items: center; margin-bottom: 5px;">
<audio controls src="figures/cocktail/mixture02.mp3" style="height: 30px; width: 100%;"></audio>
</div>
<div style="display: flex; align-items: center; margin-bottom: 5px;">
<audio controls src="figures/cocktail/mixture03.mp3" style="height: 30px; width: 100%;"></audio>
</div>
<div style="display: flex; align-items: center; margin-bottom: 5px;">
<audio controls src="figures/cocktail/mixture04.mp3" style="height: 30px; width: 100%;"></audio>
</div>
<div style="display: flex; align-items: center; margin-bottom: 5px;">
<audio controls src="figures/cocktail/mixture05.mp3" style="height: 30px; width: 100%;"></audio>
</div>
<div style="display: flex; align-items: center; margin-bottom: 5px;">
<audio controls src="figures/cocktail/mixture06.mp3" style="height: 30px; width: 100%;"></audio>
</div>
<div style="display: flex; align-items: center; margin-bottom: 5px;">
<audio controls src="figures/cocktail/mixture07.mp3" style="height: 30px; width: 100%;"></audio>
</div>
$\bm{X} = \bm{A}\bm{S}$
</col30>
<col10>
</col10>
<col30 class="fragment roll-in">
<h4>reconstructions</h4>
<div style="display: flex; align-items: center; margin-bottom: 5px;">
<img src="figures/Bach.png" alt="Bach" style="width: 80px; height: 80px; margin-right: 5px; margin-top: -10px;">
<audio controls src="figures/cocktail/sources01.mp3" style="height: 30px;"></audio>
</div>
<div style="display: flex; align-items: center; margin-bottom: 5px;">
<img src="figures/Bengio.png" alt="Bengio" style="width: 80px; height: 80px; margin-right: 5px; margin-top: -10px;">
<audio controls src="figures/cocktail/sources02.mp3" style="height: 30px;"></audio>
</div>
<div style="display: flex; align-items: center; margin-bottom: 5px;">
<img src="figures/lecun.png" alt="LeCun" style="width: 80px; height: 80px; margin-right: 5px; margin-top: -10px;">
<audio controls src="figures/cocktail/sources03.mp3" style="height: 30px;"></audio>
</div>
<div style="display: flex; align-items: center; margin-bottom: 5px;">
<img src="figures/Schmidhuber.png" alt="Schmidhuber" style="width: 80px; height: 80px; margin-right: 5px; margin-top: -10px;">
<audio controls src="figures/cocktail/sources04.mp3" style="height: 30px;"></audio>
</div>
<div style="display: flex; align-items: center; margin-bottom: 5px;">
<img src="figures/Yudkowski.png" alt="Yudkowski" style="width: 80px; height: 80px; margin-right: 5px; margin-top: -10px;">
<audio controls src="figures/cocktail/sources05.mp3" style="height: 30px;"></audio>
</div>
<div style="display: flex; align-items: center; margin-bottom: 5px;">
<img src="figures/Hinton.png" alt="Hinton" style="width: 80px; height: 80px; margin-right: 5px; margin-top: -10px;">
<audio controls src="figures/cocktail/sources06.mp3" style="height: 30px;"></audio>
</div>
<div style="display: flex; align-items: center; margin-bottom: 5px;">
<img src="figures/Jazz.png" alt="Jazz" style="width: 80px; height: 80px; margin-right: 5px; margin-top: -10px;">
<audio controls src="figures/cocktail/sources07.mp3" style="height: 30px;"></audio>
</div>
</col30>
</row>
</section>
<section>
<row style="width: 120%; margin-left: -100px;">
<col50>
<h3>Linear Independence</h3>
<blockquote style="background-color: #93a1a1; color: #fdf6e3; font-size: 36px; width: 100%; text-align: left;">
A set of vectors \(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\) in a vector space is <b>linearly independent</b> if the only solution to their linear combination being zero is when all coefficients are zero.</p>
</blockquote>
<div style="font-size: 32px;">
\begin{align}
c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n = 0 \\
\implies \quad c_1 = c_2 = \dots = c_n = 0
\end{align}
</div>
<blockquote style="background-color: #eee8d5; width: 100%; text-align: left;">
<b>Example:</b> Vectors \((1, 0)\) and \((0, 1)\) are linearly independent.
</blockquote>
<div style="font-size: 32px;">
$\vec{v}_i^T\vec{v}_j = 0$
</div>
</col50>
<col10>
</col10>
<col50>
<h3>Statistical Independence</h3>
<blockquote style="background-color: #93a1a1; color: #fdf6e3; font-size: 36px; width: 100%; text-align: left;">
Random variables \(X_1, X_2, \dots, X_n\) are <b>statistically independent</b> if the joint probability is the product of individual probabilities.
</blockquote>
<div style="font-size: 32px;">
\(P(X_1, X_2) = P(X_1) \cdot P(X_2)\)
</div>
<blockquote style="background-color: #eee8d5; width: 100%; text-align: left;">
<b>Example:</b> The outcome of two dice rolls are independent.
</blockquote>
</col50>
</row>
</section>
<section>
<h1>Independence</h1>
<blockquote style="background-color: #93a1a1; color: #fdf6e3; font-size: 36px; width: 100%; text-align: left;">
<b>Key Difference:</b> Linear independence deals with vector spaces, while statistical independence focuses on probability distributions.
</blockquote>
</section>
<section>
<h2>ICA: Mathematical Setup</h2>
<ul style="font-size: 36px; text-align: left;">
<li class="fragment roll-in">Given observed signals \(X\), we assume:
\[
X = A \cdot S
\]
where \(X\) is the observed data, \(A\) is the unknown mixing matrix, and \(S\) are the independent sources.</li>
<li class="fragment roll-in">The goal is to recover \(S\) by finding a suitable unmixing matrix \(W\) such that:
\[
Y = W \cdot X \quad \text{(where \(Y\) approximates the sources \(S\))}
\]
</li>
</ul>
</section>
<section>
<h1>identifiability</h1>
</section>
<section>
<h1>fastICA</h1>
</section>
<section>
<h2>Central Limit Theorem (CLT)</h2>
<blockquote style="background-color: #93a1a1; color: #fdf6e3; font-size: 36px; width: 100%; text-align: left;" class="fragment roll-in">
The <b>Central Limit Theorem</b> states that the sum (or average) of independent random variables with finite mean and variance tends towards a normal distribution, regardless of the original distribution.
</blockquote>
<div style="font-size: 32px;" class="fragment roll-in">
\[
Z_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n X_i \quad \xrightarrow{n \to \infty} \quad \mathcal{N}(\mu, \sigma^2)
\]
</div>
<blockquote style="background-color: #eee8d5; width: 100%; text-align: left;" class="fragment roll-in">
<b>Example:</b> The average of a large number of dice rolls will follow a normal distribution, even though a single roll is uniformly distributed.
</blockquote>
</section>
<section>
<h2>Central Limit Theorem (CLT)</h2>
<h3>Key Insights</h3>
<ul style="font-size: 36px; text-align: left;">
<li class="fragment roll-in">Applies to independent random variables with finite mean and variance.
<li class="fragment roll-in">Explains why sums or averages often look Gaussian, even if the original variables are not.
<li class="fragment roll-in">The distribution converges faster with more samples.
</ul>
<blockquote style="background-color: #93a1a1; color: #fdf6e3; width: 100%; text-align: left; font-size: 32px;" <li class="fragment roll-in">
<b>Mathematical Implication:</b> Mixed signals tend to be more Gaussian, which ICA exploits to recover independent, non-Gaussian sources.
</blockquote>
</section>
<section>
<h2>CLT and Statistical Independence</h2>
<blockquote style="background-color: #93a1a1; color: #fdf6e3; font-size: 36px; width: 100%; text-align: left;" class="fragment roll-in">
The Central Limit Theorem implies that <b>linear mixtures</b> of independent, non-Gaussian variables tend to be more Gaussian.
</blockquote>
<div style="font-size: 32px;" class="fragment roll-in">
\[
Z_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n S_i \quad \xrightarrow{n \to \infty} \quad \mathcal{N}(\mu, \sigma^2)
\]
</div>
<blockquote style="background-color: #eee8d5; width: 100%; text-align: left;" class="fragment roll-in">
<b>Key Insight:</b> When independent sources mix linearly, the result looks more Gaussian than the original sources.
</blockquote>
</section>
<section>
<h2>Connection between CLT and ICA</h2>
<h3>How ICA Exploits This Connection</h3>
<ul style="font-size: 36px; text-align: left;">
<li class="fragment roll-in">ICA assumes that <b>independent sources</b> are often non-Gaussian.</li>
<li class="fragment roll-in">A linear mixture (observed data) tends to be <b>more Gaussian</b> than the original sources.</li>
<li class="fragment roll-in">ICA reverses this mixing by searching for components that <b>maximize non-Gaussianity</b>.</li>
</ul>
<blockquote style="background-color: #93a1a1; color: #fdf6e3; width: 100%; text-align: left; font-size: 32px;" class="fragment roll-in">
<b>Takeaway:</b> ICA identifies independent sources by finding non-Gaussian signals within the observed mixtures, which are closer to the original, independent sources.
</blockquote>
</section>
<section>
<h4>Nonlinear Transformations Amplify Non-Gaussianity</h4>
<ul style="font-size: 36px; text-align: left;">
<li class="fragment roll-in">
<blockquote style="background-color: #eee8d5; width: 100%; text-align: left;">
Linear transformations (e.g., rotations or scaling) preserve Gaussianity. Nonlinear transformations distort the data in ways that highlight deviations from Gaussianity.
</blockquote>
</li>
<li class="fragment roll-in">
<blockquote style="background-color: #93a1a1; color: #fdf6e3; width: 100%; text-align: left;">
Nonlinear functions like \( \tanh(u) \) or \( u^3 \) react <b>strongly to outliers</b> or higher-order statistics, making non-Gaussian features more prominent.
</blockquote>
</li>
<li class="fragment roll-in">
<ul style="font-size: 32px; text-align: left;">
<li class="fragment roll-in">Gaussian distributions have light tails—outliers are rare.</li>
<li class="fragment roll-in">Nonlinear functions emphasize <b>outliers or rare events</b>, which are common in non-Gaussian data (like sparse signals).</li>
</ul>
</li>
</section>
<section>
<h4>Nonlinear Transformations Amplify Non-Gaussianity</h4>
<ul style="font-size: 36px; text-align: left;">
<li class="fragment roll-in">
<blockquote style="background-color: #eee8d5; width: 100%; text-align: left;">
The FastICA algorithm computes expectations using these nonlinear functions, which helps it detect signals that are <b>far from Gaussian.</b>
</blockquote>
</li>
<li class="fragment roll-in">
<blockquote style="background-color: #93a1a1; color: #fdf6e3; width: 100%; text-align: left;">
Nonlinear transformations amplify the non-Gaussian properties in the data, making it easier to separate independent components.
</blockquote>
</li>
</ul>
</section>
<section>
<h2>FastICA: Optimization Steps</h2>
<ol style="font-size: 36px; text-align: left;">
<li class="fragment roll-in"><b>Whiten the data</b>: Use PCA to make the data uncorrelated.
\[
Z = W_{\text{PCA}} \cdot X
\]
</li>
<li class="fragment roll-in"><b>Choose a non-linearity</b> (e.g., \(g(u) = \tanh(u)\)) to maximize non-Gaussianity.</li>
<li class="fragment roll-in"><b>Update the weight vector</b> \(w_i\) for each independent component:
\[
w_i \leftarrow \mathbb{E} \{Z \cdot g(w_i^T Z)\} - \mathbb{E} \{g'(w_i^T Z)\} \cdot w_i
\]
</li>
<li class="fragment roll-in"><b>Orthogonalize</b> the weight vectors to ensure independence.</li>
<li class="fragment roll-in"><b>Iterate</b> until convergence (i.e., weight vectors stabilize).</li>
</ol>
</section>
<section>
<h2>FastICA: Implementation</h2>
<pre class="python fragment roll-in" style="width: 99%; font-size: 12pt;">
<code data-trim data-noescape data-line-numbers="*|20|25-26|29">
import numpy as np
# Step 1: Center and whiten the data
def whiten(X):
X = X - np.mean(X, axis=0) # Center the data
cov = np.cov(X, rowvar=False) # Covariance matrix
eigvals, eigvecs = np.linalg.eigh(cov) # Eigen-decomposition
D = np.diag(1.0 / np.sqrt(eigvals)) # Whitening matrix
return X @ eigvecs @ D @ eigvecs.T
# Step 2: Nonlinear function for maximizing non-Gaussianity
def g(u):
return np.tanh(u) # Hyperbolic tangent nonlinearity
def g_derivative(u):
return 1 - np.tanh(u) ** 2 # Derivative of tanh
# Step 3: FastICA iteration
def fastica(X, n_components, max_iter=100, tol=1e-5):
X = whiten(X)
n_samples, n_features = X.shape
W = np.random.rand(n_components, n_features) # Initialize random weights
for i in range(max_iter):
W_new = (X.T @ g(X @ W.T)) / n_samples # Update all weights
W_new -= np.diag(np.mean(g_derivative(X @ W.T), axis=0)) @ W_new
# Decorrelate weights (orthogonalization)
W_new = np.linalg.qr(W_new)[0]
# Check for convergence
if np.max(np.abs(np.abs(np.diag(W_new @ W.T)) - 1)) < tol:
break
W = W_new
return W @ X.T # Recovered signals
# Step 4: Example usage with synthetic data
np.random.seed(0)
S = np.array([np.sin(np.linspace(0, 8, 1000)),
np.sign(np.sin(np.linspace(0, 8, 1000)))]).T
A = np.array([[1, 1], [0.5, 2]]) # Mixing matrix
X = S @ A.T # Mixed signals
# Apply FastICA
S_estimated = fastica(X, n_components=2)
# Plot results
import matplotlib.pyplot as plt
fig, axs = plt.subplots(3, 1, figsize=(8, 6))
axs[0].plot(S)
axs[0].set_title('Original Signals')
axs[1].plot(X)
axs[1].set_title('Mixed Signals')
axs[2].plot(S_estimated.T)
axs[2].set_title('Recovered Signals (FastICA)')
plt.tight_layout()
plt.show()
</code>
</pre>
</section>
<section>
<h1>Infomax</h1>
</section>
<section>
<h1>Maximal Likelihood</h1>
</section>
</section>
<!-- --------------------------------------------------------------------------->
<section>
<section>
<h2>Nonnegative matrix factorization</h2>
<div class="slide-footer">
<a href="https://www.nature.com/articles/44565">Learning the parts of objects by non-negative matrix factorization</a>
</div>
</section>
<section>
<h2>Additive features</h2>
<row>
<col60>
<ul style="list-style-type: disk; font-size: 26pt">
<li class="fragment roll-in" data-fragment-index="0"> Features are non- negative and only add up
<li class="fragment roll-in" data-fragment-index="1"> Features are unknown: data comes as their combination
</ul>
</col60>
<col>
<div style="position:relative; width:640px; height:800px; margin:0 auto;">
<img class="fragment current-visible" data-transition="slide fade-out" data-fragment-index="0" width="640" src="figures/addfeatures.png" style="position:absolute;top:0;left:0;border:0; box-shadow: 0px 0px 0px rgba(255, 255, 255, 255);" />
<img class="fragment current-visible" data-transition="slide fade-out" data-fragment-index="1" width="640" src="figures/fullface.png" style="position:absolute;top:0;left:0;border:0; box-shadow: 0px 0px 0px rgba(255, 255, 255, 255);" />
</div>
</col>
</row>
</section>
<section>
<h2>NMF Formally</h2>
<blockquote style="background-color: #eee8d5; width: 100%; font-size: 22pt" class="fragment" data-fragment-index="0">
Find a low rank non-negative approximation to a matrix
</blockquote>
<ul style="list-style-type: square; font-size: 32px;">
<li class="fragment roll-in" data-fragment-index="1"> Given data $\bm{X}$ find their factorization:
\begin{align*}
\bm{X} \approx \bm{W}\bm{H}\\
\bm{X}_{ij} \ge 0 \mbox{ }\bm{W}_{ij} \ge 0 \mbox{ }\bm{H}_{ij} \ge 0
\end{align*}
<li class="fragment roll-in" data-fragment-index="2"> Minimize the objective function:
\begin{align}\nonumber
E = \frac{1}{2}\|\bm{X} - \bm{W}\bm{H}\|_F^2
\end{align}
<li class="fragment roll-in" data-fragment-index="3"> Ignore other possible objectives
</ul>
</section>
<section>
<h3>Gradient Descent</h3>
<ul style="list-style-type: square; font-size: 32px;">
<li class="fragment roll-in" data-fragment-index="0"> Compute the derivative and find its zero
\begin{align}\nonumber
\frac{\partial E}{\partial \bm{W}} &=&
\bm{WHH}^{T} - \bm{XH}^{T}\\\nonumber
\frac{\partial E}{\partial \bm{H}} &=&
\bm{W}^{T}\bm{WH} - \bm{W}^{T}\bm{X}
\end{align}
<li class="fragment roll-in" data-fragment-index="1"> Classical solution
\begin{align}\nonumber
\bm{H} &=& \bm{H} + \bm{\eta} \odot (\bm{W}^T\bm{X} - \bm{W}^T\bm{W}\bm{H})
\end{align}
<li class="fragment roll-in" data-fragment-index="2"> Exponentiated gradient
\begin{align}\nonumber
\bm{H} &=& \bm{H}\odot e^{\bm{\eta} \odot (\bm{W}^T\bm{X} - \bm{W}^T\bm{W}\bm{H})}
\end{align}
</ul>
</section>
<section>
<h2>Multiplicative updates</h2>
<row style="font-size: 32px;">
<col50>
<ul style="list-style-type: square;">
<li class="fragment roll-in" data-fragment-index="0"> Setting the learning rates:
\begin{align}
\bm{\eta}_{\bm{H}} &= \frac{\bm{H}}{\bm{W}^T\bm{W}\bm{H}}\\
\bm{\eta}_{\bm{W}} &= \frac{\bm{W}}{\bm{W}\bm{H}\bm{H}^T}\\
\end{align}
<li class="fragment roll-in" data-fragment-index="1">Results in updates:
\begin{align*}
\bm{H} &=& \bm{H}\odot \frac{\bm{W}^{T}\bm{X}}
{\bm{W}^{T}\bm{W}\bm{H}}\\
\bm{W} &=& \bm{W}\odot \frac{\bm{X}\bm{H}^{T}}
{\bm{W}\bm{H}\bm{H}^{T}}
\end{align*}
</ul>
</col50>
<col50>
<div class="fragment roll-in" data-fragment-index="2">
<blockquote style="background-color: #93a1a1; color: #fdf6e3; font-size: 38px; width:100%;">
Advantages:
</blockquote>
<ul>
<li> automatic non-negativity constraint satisfaction
<li> adaptive learning rate
<li> no parameter setting
</ul>
</div>
</col50>
</row>
</section>
<section>
<h2>NMF on faces</h2>
<img style="border:0; box-shadow: 0px 0px 0px rgba(150, 150, 255, 1); " width="800" class="reveal"
src="figures/nmf_example1.svg" alt="nmf faces">
</section>
<section>
<h2>NMF on hyperspectral images</h2>
<img style="border:0; box-shadow: 0px 0px 0px rgba(150, 150, 255, 1); " width="800" class="reveal"
src="figures/nmf_example2.svg" alt="nmf hyper spectral">
</section>
</section>
<!-- ------------------------------------------------------------------------- -->
<section>
<section>
<h1>Dictionary Learning</h1>
</section>
<section>
<h2>The problem</h2>
<img style="border:0; box-shadow: 0px 0px 0px rgba(150, 150, 255, 1); " width="500"
src="figures/dictionary_learning_matrices.svg" alt="DL matrices">
\begin{align*}
\underset{\vec{\alpha} \in \RR^m}{\min} \frac{1}{2}\|\vec{x} - \bm{D}\vec{\alpha}\|^2_2 + \lambda\phi(\vec{\alpha})
\end{align*}
</section>
<section>
<h2>Application: Denoising</h2>
<img width="80%"
src="figures/DL_denoising.svg" alt="Elad denoising" style="margin-top: -40px;">
<div class="slide-footer">
<a href="https://www.springer.com/gp/book/9781441970107">
Elad, M., 2010. Sparse and redundant representations: from theory to applications in signal and image processing. Springer Science & Business Media.
</div>
</section>
<section>
<h2>Application: Compression</h2>
<img style="border:0; box-shadow: 0px 0px 0px rgba(150, 150, 255, 1); " width="600"
src="figures/DL_compression.svg" alt="Elad compression">
<div class="slide-footer">
<a href="https://elad.cs.technion.ac.il/wp-content/uploads/2018/02/IEEE_08_Deblocking.pdf">
Bryt, O. and Elad, M., 2008, Improving the k-SVD facial image compression using a linear deblocking method.
</a>
</div>
</section>
</section>
<!-- ------------------------------------------------------------------------- -->
<section>
<section>
<h1>Autoencoders</h1>
</section>
<section>
<h2>an alternative view of PCA</h2>
<row>
<col>
<img style="border:0; box-shadow: 0px 0px 0px rgba(150, 150, 255, 1); " width="500"
src="figures/AE_PCA.svg" alt="AE_PCA">
</col>
<col50 style="font-size: 28px;">
<blockquote style="background-color: #93a1a1; color: #fdf6e3; font-size: 38px; width:100%;">
Reconstruction error:
</blockquote>
<ul style="list-style-type: none; font-size: 22px;">
<li class="fragment roll-in">
\begin{align*}
\prob{J}{\bm{X}, \bm{X}^{\prime}} & = \underset{\bm{W}}{\argmin} \|\bm{X} - \bm{X}^{\prime}\|^2
\end{align*}
<li class="fragment roll-in">
\begin{align*}
\prob{J}{\bm{X}, \bm{X}^{\prime}} & = \underset{\bm{W}}{\argmin} \|\bm{X} - \bm{W}^T\bm{W}\bm{X}\|^2
\end{align*}
<li class="fragment roll-in"> Encoder
\begin{align*}
\bm{W}
\end{align*}
<li class="fragment roll-in"> Decoder
\begin{align*}
\bm{W}^T
\end{align*}
</ul>
</col50>
</row>
<div class="slide-footer">
<a href="https://link.springer.com/article/10.1007/BF00332918">Bourlard, H. and Kamp, Y., 1988. Auto-association by multilayer perceptrons and singular value decomposition. Biological cybernetics, 59(4-5), pp.291-294.</a>
</div>
</section>
<section>
<h2>Even this simple model is not convex</h2>
<img width="500" src="figures/x_times_y.svg" alt="x times y">
</section>
<section>
<h2>So why limit ourselves: Autoencoder</h2>
<img style="border:0; box-shadow: 0px 0px 0px rgba(150, 150, 255, 1); " width="850"
src="figures/AE.svg" alt="Autoencoder">
</section>
<section>
<h2>pre-training Autoencoder</h2>
<img width="600" src="figures/science_AE.svg" alt="Science Autoencoder">
<div class="slide-footer">
<a href="https://www.cs.toronto.edu/~hinton/science.pdf">Hinton, G.E. and Salakhutdinov, R.R., 2006. Reducing the dimensionality of data with neural networks. science, 313(5786), pp.504-507.</a>
</div>
</section>
<section>
<h2>pre-training Autoencoder: MNIST</h2>
PCA vs. 784-1000-500-250-2 AE
<img style="border:0; box-shadow: 0px 0px 0px rgba(150, 150, 255, 1); " width="850"
src="figures/science_AE_MNIST.svg" alt="Science Autoencoder">
<div class="slide-footer">
<a href="https://www.cs.toronto.edu/~hinton/science.pdf">Hinton, G.E. and Salakhutdinov, R.R., 2006. Reducing the dimensionality of data with neural networks. science, 313(5786), pp.504-507.</a>
</div>
</section>
<section>
<h2>denoising Autoencoder</h2>
<row>
<col50>
<img style="border:0; box-shadow: 0px 0px 0px rgba(150, 150, 255, 1); " width="850"
src="figures/filters_corruption_AE.png" alt="Autoencoder">
</col50>
<col50>
<img style="border:0; box-shadow: 0px 0px 0px rgba(150, 150, 255, 1); " width="850"
src="figures/filters_corruption_DAE.png" alt="Denoising Autoencoder">
</col50>
</row>
<div class="slide-footer">
<a href="https://www.cs.toronto.edu/~larocheh/publications/vincent10a.pdf">Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. and Manzagol, P.A., 2010. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of machine learning research, 11(Dec), pp.3371-3408.
</a>
</div>
</section>
</section>
<!-- ------------------------------------------------------------------------- -->
<section>
<section>
<h2>Take Home Points</h2>
</section>
<section>
<h2>matrix factorization methods</h2>
<img style="border:0; box-shadow: 0px 0px 0px rgba(150, 150, 255, 1); " width="1000"
src="figures/factorizations.svg" alt="methods">
</section>
<section>
<h2>Effect of sparsity parameter</h2>
<img style="border:0; box-shadow: 0px 0px 0px rgba(150, 150, 255, 1); " width="1400"
src="figures/sparsity_demo.svg" alt="sparse NMF">
</section>
<section>
<h2>Things to have in mind</h2>
<row style="font-size: 26px;">
<col50 class="fragment roll-in" data-fragment-index="0">
<blockquote style="background-color: #93a1a1; color: #fdf6e3;">
Principal Component Analysis
</blockquote>
<ul>
<li class="fragment roll-in" data-fragment-index="1"> Finds orthogonal axes of maximal variance
<li class="fragment roll-in" data-fragment-index="2"> Uses full rank transform
<li class="fragment roll-in" data-fragment-index="3"> Can be used for compression when lower variance axes are dropped at reconstruction
<li class="fragment roll-in" data-fragment-index="4"> Frequently used to pre-process data
</ul>
</col50>
<col50 class="fragment roll-in" data-fragment-index="5">
<blockquote style="background-color: #93a1a1; color: #fdf6e3; font-size: 24px; ">
Independent Component Analysis
</blockquote>
<ul>
<li class="fragment roll-in" data-fragment-index="6"> A blind source separation problem
<li class="fragment roll-in" data-fragment-index="7"> Finds a linear transform that maximizes statistical independence of sources
<li class="fragment roll-in" data-fragment-index="8"> Resulting basis is not orthogonal
<li class="fragment roll-in" data-fragment-index="9"> Noise is often independent of the rest of data
</ul>
</col50>
</row>
<row style="font-size: 26px;">
<col50 class="fragment roll-in" data-fragment-index="10">
<blockquote style="background-color: #93a1a1; color: #fdf6e3; font-size: 24px;">
Nonnegative Matrix Factorization
</blockquote>
<ul>
<li class="fragment roll-in" data-fragment-index="11"> Additive features $\to$ nonnegative problem
<li class="fragment roll-in" data-fragment-index="12"> Low rank approximation
<li class="fragment roll-in" data-fragment-index="13"> Multiplicative updates
<li class="fragment roll-in" data-fragment-index="14"> Nonnegativity leads to sparse solution
</ul>
</col50>
<col50 class="fragment roll-in" data-fragment-index="15">
<blockquote style="background-color: #93a1a1; color: #fdf6e3; ">
Dictionary Learning
</blockquote>
<ul>
<li class="fragment roll-in" data-fragment-index="16"> Overcomplete dictionary
<li class="fragment roll-in" data-fragment-index="17"> Sparse representation of samples
<li class="fragment roll-in" data-fragment-index="18"> Only a few bases are involved in encoding each sample
<li class="fragment roll-in" data-fragment-index="19"> uses explicit sparsity constraint
</ul>
</col50>
</row>
</section>
</section>
</div>
</div>
<script src="dist/reveal.js"></script>
<link rel="stylesheet" href="plugin/highlight/monokai.css">
<script src="plugin/highlight/highlight.js"></script>
<script src="plugin/math/math.js"></script>
<script src="plugin/chalkboard/plugin.js"></script>
<script src="plugin/notes/notes.js"></script>
<script src="plugin/zoom/zoom.js"></script>
<script src="plugin/fullscreen/fullscreen.js"></script>
<script src="plugin/menu/menu.js"></script>
<script>
// Full list of configuration options available at:
// https://github.com/hakimel/reveal.js#configuration
Reveal.initialize({
// history: true,
hash: true,
margin: 0.01,
minScale: 0.01,
maxScale: 1.23,
menu: {
themes: false,
openSlideNumber: true,
openButton: false,
},
chalkboard: {
boardmarkerWidth: 1,
chalkWidth: 2,
chalkEffect: 1,
toggleNotesButton: false,
toggleChalkboardButton: false,
slideWidth: Reveal.width,
slideHeight: Reveal.height,
// src: "chalkboards/chalkboard_em2.json",
readOnly: false,
theme: "blackboard",
eraser: { src: "plugin/chalkboard/img/sponge.png", radius: 30},
},
math: {
mathjax: 'https://cdn.jsdelivr.net/gh/mathjax/[email protected]/MathJax.js',
config: 'TeX-AMS_SVG-full',
// pass other options into `MathJax.Hub.Config()`
TeX: {
Macros: {
RR: '\\mathbb{R}',
PP: '\\mathbb{P}',
EE: '\\mathbb{E}',
NN: '\\mathbb{N}',
vth: '\\vec{\\theta}',
loss: '{\\cal l}',
hclass: '{\\cal H}',
CD: '{\\cal D}',
def: '\\stackrel{\\text{def}}{=}',
pag: ['\\text{pa}_{{\cal G}^{#1}}(#2)}', 2],
vec: ['\\boldsymbol{\\mathbf #1}', 1],
set: [ '\\left\\{#1 \\; : \\; #2\\right\\}', 2 ],
bm: ['\\boldsymbol{\\mathbf #1}', 1],
argmin: ['\\operatorname\{arg\\,min\\,\}'],
argmax: ['\\operatorname\{arg\\,max\\,\}'],
prob: ["\\mbox{#1$\\left(#2\\right)$}", 2],
},
loader: {load: ['[tex]/color']},
extensions: ["color.js"],
tex: {packages: {'[+]': ['color']}},
svg: {
fontCache: 'global'
}
}
},
plugins: [ RevealMath, RevealChalkboard, RevealHighlight, RevealNotes, RevealZoom, RevealMenu ],
});
Reveal.configure({ fragments: true }); // set false when developing to see everything at once
Reveal.configure({ slideNumber: true });
//Reveal.configure({ history: true });
Reveal.configure({ slideNumber: 'c / t' });
Reveal.addEventListener( 'darkside', function() {
document.getElementById('theme').setAttribute('href','dist/theme/aml_dark.css');
}, false );
Reveal.addEventListener( 'brightside', function() {
document.getElementById('theme').setAttribute('href','dist/theme/aml.css');
}, false );
</script>
<style type="text/css">
/* 1. Style header/footer <div> so they are positioned as desired. */
#header-left {
position: absolute;
top: 0%;
left: 0%;
}
#header-right {
position: absolute;
top: 0%;
right: 0%;
}
#footer-left {
position: absolute;
bottom: 0%;
left: 0%;
}
</style>
<!-- // 2. Create hidden header/footer -->
<div id="hidden" style="display:none;">
<div id="header">
<div id="header-left"><h4>CS8850</h4></div>
<div id="header-right"><h4>Advanced Machine Learning</h4></div>
<div id="footer-left">
<img style="border:0; box-shadow: 0px 0px 0px rgba(150, 150, 255, 1);" width="200"
src="figures/valentino.png" alt="robot learning">
</div>
</div>
</div>
<script type="text/javascript">
// 3. On Reveal.js ready event, copy header/footer <div> into each `.slide-background` <div>
var header = $('#header').html();
if ( window.location.search.match( /print-pdf/gi ) ) {
Reveal.addEventListener( 'ready', function( event ) {
$('.slide-background').append(header);
});
}
else {
$('div.reveal').append(header);
}
</script>
</body>
</html>