-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_CSRVertex_labeling.py
483 lines (397 loc) · 22.1 KB
/
train_CSRVertex_labeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import numpy as np
from tqdm import tqdm
from data.vc_dataloader2 import CSRVertexLabeledDataset # Ensure this matches your data loader path
from model.csrvertexclassification import CSRVCNet
from data.datautil import decode_names
import logging
import os
import csv
import torch.multiprocessing as mp
from torch.optim.lr_scheduler import ReduceLROnPlateau
from pytorch3d.structures import Meshes
from pytorch3d.io import save_obj
from config import load_config
from plyfile import PlyData, PlyElement
from data.preprocess import process_surface_inverse
from scipy.spatial import cKDTree
import nibabel as nib
from model.csrvcv3 import CSRVCV3 # Updated import
import torch.nn.functional as F
def chamfer_distance(v1, v2):
kdtree1 = cKDTree(v1)
kdtree2 = cKDTree(v2)
distances1, _ = kdtree1.query(v2)
distances2, _ = kdtree2.query(v1)
return np.mean(distances1) + np.mean(distances2)
def get_num_classes(atlas):
atlas_num_classes = {
'aparc': 36, # 34 regions + 1 for unknown +1 for corpus callosum mapped to 4 from -1
'a2009s': 83, # 82 regions + 1 for unknown
'DKTatlas40': 36, # 40 regions + 1 for unknown
'BA': 53, # 52 regions + 1 for unknown
# Add more atlases as needed
}
return atlas_num_classes.get(atlas, 0)
def save_mesh_with_annotations(verts, faces, labels, ctab, save_path_fs, data_name='hcp'):
# Convert tensors to numpy arrays and ensure correct shapes
verts = verts.squeeze()
faces = faces.squeeze()
print("Original verts shape:", verts.shape)
# Assert that verts should have shape (V, 3)
assert verts.dim() == 2 and verts.shape[1] == 3, "Verts should have shape (V, 3)"
verts = verts.squeeze().cpu().numpy()
print("Processed verts shape after squeeze and numpy conversion:", verts.shape)
# Assert that verts now have shape (V, 3)
assert verts.ndim == 2 and verts.shape[1] == 3, "Processed verts should have shape (V, 3)"
print("Original faces shape:", faces.shape)
# Assert that faces should have shape (F, 3)
assert faces.dim() == 2 and faces.shape[1] == 3, "Faces should have shape (F, 3)"
faces = faces.squeeze().long().cpu().numpy()
print("Processed faces shape after squeeze, long, and numpy conversion:", faces.shape)
# Assert that faces now have shape (F, 3)
assert faces.ndim == 2 and faces.shape[1] == 3, "Processed faces should have shape (F, 3)"
# Process the surface if needed
verts, faces = process_surface_inverse(verts, faces, data_name)
print("Verts shape after process_surface_inverse:", verts.shape)
print("Faces shape after process_surface_inverse:", faces.shape)
# Assert that verts and faces still have correct shapes
assert verts.ndim == 2 and verts.shape[1] == 3, "Verts after processing should have shape (V, 3)"
assert faces.ndim == 2 and faces.shape[1] == 3, "Faces after processing should have shape (F, 3)"
# Process labels
print("Original labels shape:", labels.shape)
# Assert that labels should be 1D or 2D with one column
assert labels.dim() in [1, 2], "Labels should be 1D or 2D tensor"
labels = labels.squeeze().long().cpu().numpy()
print("Processed labels shape after squeeze, long, and numpy conversion:", labels.shape)
# Assert that labels now have shape (V,)
assert labels.ndim == 1 and labels.shape[0] == verts.shape[0], "Labels should have shape (V,)"
# Remap labels of class 4 to -1
labels[labels == 4] = -1
print("Labels after remapping class 4 to -1:", np.unique(labels))
# Ensure color table (ctab) is correctly sized
print("Original ctab shape:", ctab.shape)
# Assert that ctab should have shape (1, N, 5)
assert ctab.dim() == 3 and ctab.shape[2] == 5, "ctab should have shape (1, N, 5)"
ctab = ctab.squeeze().long().cpu().numpy()
print("Processed ctab shape after squeeze, long, and numpy conversion:", ctab.shape)
# Assert that ctab now has shape (N, 5)
assert ctab.ndim == 2 and ctab.shape[1] == 5, "ctab should have shape (N, 5)"
# Decode names for the annotation file
names = decode_names()
print("Names decoded for annotation file:", names)
# Assert that the number of names matches the number of labels in ctab
assert len(names) == ctab.shape[0], "Number of names must match number of labels in ctab"
# Save the surface geometry
nib.freesurfer.write_geometry(save_path_fs + '.surf', verts, faces)
print(f"Saved surface geometry to {save_path_fs}.surf")
# Save the annotation file
nib.freesurfer.write_annot(save_path_fs + '.annot',
labels,
ctab,
names, fill_ctab=False)
print(f"Saved annotation file to {save_path_fs}.annot")
def compute_dice(pred, target, num_classes, exclude_classes=[]):
dice_scores = []
pred = pred.cpu().numpy()
target = target.cpu().numpy()
for i in range(num_classes):
if i in exclude_classes:
continue
pred_i = (pred == i)
target_i = (target == i)
intersection = np.sum(pred_i & target_i)
union = np.sum(pred_i) + np.sum(target_i)
if union == 0:
dice_score = 1.0
else:
dice_score = 2. * intersection / union
dice_scores.append(dice_score)
return np.mean(dice_scores)
def visualize_and_save_mesh(csrvcnet, dataloader, result_dir, device, config, epoch):
# Turn off gradients for inference and visualization
with torch.no_grad(): # This disables gradient tracking, saving memory
for idx, data in enumerate(dataloader):
volume_in, v_gt, f_gt, labels, subid, color_map = data
# Move data to device (CPU or GPU)
volume_in = volume_in.to(device).float()
v_gt = v_gt.to(device)
f_gt = f_gt.to(device)
labels = labels.to(device)
# Set data for the network
csrvcnet.set_data(v_gt, volume_in, f=f_gt)
# Get predictions/logits
if config.model_type == 'csrvc' and config.version == '3':
# Deformation not being trained here
_ = csrvcnet(None, v_gt) # Perform the forward pass
logits = csrvcnet.get_class_logits()
logits = torch.nn.functional.log_softmax(logits, dim=1)
logits = logits.unsqueeze(0) # Adjust shape to add batch dimension
else:
logits = csrvcnet(v_gt)
# Ensure the logits have the correct shape
assert logits.ndim == 3, f"Expected 3 dimensions, but got {logits.ndim} dimensions."
assert logits.shape[0] == 1, f"Expected 1 sample in the batch, but got shape {logits.shape[0]}."
# Get the predicted classes (argmax over classes)
preds = torch.argmax(logits, dim=2)
# Ensure the predictions have the correct shape
assert preds.ndim == 2, f"Expected 2 dimensions for predictions, but got {preds.ndim} dimensions."
assert preds.shape[0] == 1, f"Expected 1 sample in the batch, but got shape {preds.shape[0]}."
# Squeeze the batch dimension
preds = preds.squeeze(0)
# Create mesh object for saving
mesh = Meshes(verts=v_gt, faces=f_gt)
# Save predicted annotated mesh
save_path = os.path.join(result_dir, f"annotated_mesh_gtpred_{subid[0]}_{config.surf_hemi}_{config.surf_type}_layers{config.gnn_layers}_epoch{epoch}.ply")
save_mesh_with_annotations(v_gt, f_gt, preds, color_map, save_path, data_name='hcp')
print(f"Saved predicted annotated mesh for subject {subid[0]} to {save_path}")
# Save ground truth annotated mesh
save_path = os.path.join(result_dir, f"annotated_mesh_gtfs_{subid[0]}_{config.surf_hemi}_{config.surf_type}_layers{config.gnn_layers}_epoch{epoch}.ply")
save_mesh_with_annotations(v_gt, f_gt, labels, color_map, save_path, data_name='hcp')
print(f"Saved FreeSurfer ground truth annotated mesh for subject {subid[0]} to {save_path}")
def train_surfvc(config):
"""
Training script for CSRVCNet for vertex classification.
"""
# --------------------------
# load configuration
# --------------------------
model_dir = config.model_dir
data_name = config.data_name
surf_type = config.surf_type
surf_hemi = config.surf_hemi
device = config.device
tag = config.tag
#visualize = config.visualize.lower() == 'yes'
visualize = False
n_epochs = config.n_epochs
start_epoch = config.start_epoch
n_samples = config.n_samples
lr = config.lr
C = config.dim_h # hidden dimension of features
K = config.kernel_size # kernel / cube size
Q = config.n_scale # multi-scale input
# Get number of classes based on atlas
num_classes = get_num_classes(config.atlas)
if num_classes == 0:
raise ValueError(f"Unsupported atlas: {config.atlas}")
# create log file
log_filename = f"{model_dir}/model_vertex_classification_{surf_type}_{data_name}_{surf_hemi}_{tag}_v{config.version}_gnn{config.gnn}_layers{config.gnn_layers}"
if config.gnn == 'gat':
use_gcn = False
log_filename += f"_heads{config.gat_heads}"
elif config.gnn == 'gcn':
use_gcn = True
log_filename += ".log"
logging.basicConfig(filename=log_filename, filemode='a', level=logging.INFO, format='%(asctime)s %(message)s')
# --------------------------
# initialize models
# --------------------------
logging.info("initialize model ...")
print('csrvc version ', config.version)
use_pytorch3d_normal = config.use_pytorch3d_normal != 'no'
print("config.model_type, config.version")
print(config.model_type,config.version)
if config.model_type == 'csrvc' and config.version == '3':
csrvcnet = CSRVCV3(dim_h=C,
kernel_size=K,
n_scale=Q,
sf=config.sf,
gnn_layers=config.gnn_layers,
use_gcn=use_gcn,
gat_heads=config.gat_heads,
num_classes=num_classes).to(device)
elif config.model_type == 'csrvc':
assert False, "sanity check"
csrvcnet = CSRVCNet(dim_h=C, kernel_size=K, n_scale=Q,
gnn_layers=config.gnn_layers,
use_gcn=use_gcn,
gat_heads=config.gat_heads,
num_classes=num_classes,
use_pytorch3d=use_pytorch3d_normal
).to(device)
else:
assert False, "your config arguments don't match this file."
model_path = None
if config.model_file:
print('loading model', config.model_file)
print('hemi', config.surf_hemi)
print('surftype', config.surf_type)
start_epoch = int(config.start_epoch)
model_path = os.path.join(config.model_dir, config.model_file)
if model_path and os.path.isfile(model_path):
print('device', config.device)
csrvcnet.load_state_dict(torch.load(model_path, map_location=torch.device(config.device)))
print(f"Model loaded from {model_path}")
else:
print("No model file provided or file does not exist. Starting from scratch.")
print('start epoch', start_epoch)
optimizer = optim.Adam(csrvcnet.parameters(), lr=lr)
patience = 0
if config.patience != "standard":
try:
patience = int(config.patience)
except:
print("patience should either be standard (no scheduler) or an int >=0")
else:
print("scheduler is standard and will never step")
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=patience, verbose=True)
# --------------------------
# load dataset
# --------------------------
logging.info("load dataset ...")
trainset = CSRVertexLabeledDataset(config, 'train') # Ensure your data loader is correct
validset = CSRVertexLabeledDataset(config, 'valid') # Ensure your data loader is correct
trainloader = DataLoader(trainset, batch_size=1, shuffle=True, num_workers=4)
validloader = DataLoader(validset, batch_size=1, shuffle=False, num_workers=4)
# --------------------------
# training
# --------------------------
logging.info("start training ...")
for epoch in tqdm(range(start_epoch, n_epochs + 1)):
avg_loss = []
subs = 0
for idx, data in enumerate(trainloader):
volume_in, v_in, f_in, labels, subid, color_map = data # Ensure this matches your data loader output
optimizer.zero_grad()
volume_in = volume_in.to(device).float()
v_in = v_in.to(device)
f_in = f_in.to(device)
labels = labels.to(device) # Ensure labels are moved to the device
csrvcnet.set_data(v_in, volume_in, f=f_in) # Set the input data
if config.model_type == 'csrvc' and config.version == '3':
# No initial_state or features_in needed
# Integrate over time
_ = csrvcnet(None, v_in) #deformation not being trained here.
logits = csrvcnet.get_class_logits()
logits = logits.unsqueeze(0)#it appears i'm missing a dimension of logits, probably a trivial one representing the batch that is never used
else:
logits = csrvcnet(v_in) # Forward pass
print('logits.shape',logits.shape)
assert logits.ndim == 3, f"Expected 3 dimensions, but got {logits.ndim} dimensions."
assert logits.shape[0] == 1, f"Expected 1 patient {logits.shape} shape."
# Reshape logits to match the shape required for CrossEntropyLoss
logits = logits.permute(0, 2, 1) # [batch_size, num_vertices, num_classes] -> [batch_size, num_classes, num_vertices]
# Ensure labels are within the valid range
if torch.any(labels < 0) or torch.any(labels >= num_classes):
print(f"Invalid label detected in batch {idx} of epoch {epoch}")
print(f"Labels range: {labels.min()} to {labels.max()}")
continue # Skip this batch
loss = nn.CrossEntropyLoss()(logits, labels) # Calculate classification loss
avg_loss.append(loss.item())
loss.backward()
optimizer.step()
logging.info('epoch:{}, loss:{}'.format(epoch, np.mean(avg_loss)))
if epoch == start_epoch or epoch == n_epochs or epoch % 10 == 0:
logging.info('-------------validation--------------')
with torch.no_grad():
valid_error = []
valid_dice_scores = [] # List to store dice scores
exclude_classes = [4] if config.atlas == 'aparc'or config.atlas == 'DKTatlas40' else [] #exclude non cortex, but include medial wall
for idx, data in enumerate(validloader):
volume_in, v_in, f_in, labels, subid, color_map = data # Ensure this matches your data loader output
volume_in = volume_in.to(device).float()
v_in = v_in.to(device)
f_in = f_in.to(device)
labels = labels.to(device) # Ensure labels are moved to the device
csrvcnet.set_data(v_in, volume_in, f=f_in) # Set the input data
if config.model_type == 'csrvc' and config.version == '3':
# No initial_state or features_in needed
# Integrate over time
_ = csrvcnet(None, v_in) #deformation not being trained here.
logits = csrvcnet.get_class_logits()
logits = logits.unsqueeze(0)#it appears i'm missing a dimension of logits, probably a trivial one representing the batch that is never used
else:
logits = csrvcnet(v_in) # Forward pass
print('logits.shape',logits.shape)
assert logits.ndim == 3, f"Expected 3 dimensions, but got {logits.ndim} dimensions."
assert logits.shape[0] == 1, f"Expected 1 patient {logits.shape} shape."
logits = logits.permute(0, 2, 1) # Reshape logits
if torch.any(labels < 0) or torch.any(labels >= num_classes):
print(f"Invalid label detected in validation batch {idx} of epoch {epoch}")
print(f"Labels range: {labels.min()} to {labels.max()}")
continue # Skip this batch
valid_loss = nn.CrossEntropyLoss()(logits, labels).item()
valid_error.append(valid_loss)
# Calculate Dice score
preds = torch.argmax(logits, dim=1) # Get predicted labels
dice_score = compute_dice(preds, labels, num_classes, exclude_classes)
valid_dice_scores.append(dice_score)
if epoch > 1 and epoch % 10 == 0 and config.patience != 'standard':
old_lr = optimizer.param_groups[0]['lr']
scheduler.step(np.mean(valid_error).item())
new_lr = optimizer.param_groups[0]['lr']
if old_lr != new_lr:
print(f"Learning rate was adjusted from {old_lr} to {new_lr}")
else:
print("Learning rate was not adjusted.")
logging.info('epoch:{}, validation error:{}, validation dice:{}'.format(epoch, np.mean(valid_error), np.mean(valid_dice_scores)))
logging.info('-------------------------------------')
# Log to CSV
csv_log_path = os.path.join(model_dir, f"training_log_vertex_classification_{tag}.csv")
fieldnames = ['surf_hemi', 'surf_type', 'version', 'epoch', 'training_loss', 'validation_error', 'validation_dice', 'gnn', 'gnn_layers', 'gat_heads']
if not os.path.exists(csv_log_path):
with open(csv_log_path, 'w', newline='') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
avg_training_loss = np.mean(avg_loss)
with open(csv_log_path, 'a', newline='') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
if config.gnn == 'gat':
writer.writerow({
'surf_hemi': surf_hemi,
'surf_type': surf_type,
'version': config.version,
'epoch': epoch,
'training_loss': avg_training_loss, # Include training loss here
'validation_error': np.mean(valid_error),
'validation_dice': np.mean(valid_dice_scores),
'gnn': config.gnn,
'gnn_layers': config.gnn_layers,
'gat_heads': config.gat_heads
})
elif config.gnn == 'gcn':
writer.writerow({
'surf_hemi': surf_hemi,
'surf_type': surf_type,
'version': config.version,
'epoch': epoch,
'training_loss': avg_training_loss, # Include training loss here
'validation_error': np.mean(valid_error),
'validation_dice': np.mean(valid_dice_scores),
'gnn': config.gnn,
'gnn_layers': config.gnn_layers,
'gat_heads': 'NA'
})
# Call the visualization method if needed
if epoch == start_epoch or epoch == n_epochs or epoch % 50 == 0:
if visualize:
visualize_and_save_mesh(csrvcnet, validloader, config.result_dir, device, config, epoch)
# save model checkpoints
if epoch == start_epoch or epoch == n_epochs or epoch % 10 == 0:
if config.gnn == 'gat':
model_filename = f"model_vertex_classification_{surf_type}_{data_name}_{surf_hemi}_{tag}_v{config.version}_gnn{config.gnn}_layers{config.gnn_layers}_heads{config.gat_heads}_{epoch}epochs.pt"
elif config.gnn == 'gcn':
model_filename = f"model_vertex_classification_{surf_type}_{data_name}_{surf_hemi}_{tag}_v{config.version}_gnn{config.gnn}_layers{config.gnn_layers}_{epoch}epochs.pt"
elif config.gnn == 'baseline':
model_filename = f"model_vertex_classification_{surf_type}_{data_name}_{surf_hemi}_{tag}_v{config.version}_gnn{config.gnn}_{epoch}epochs.pt"
else:
assert False, 'update naming conventions for model file name'
torch.save(csrvcnet.state_dict(), os.path.join(model_dir, model_filename))
if config.gnn == 'gat':
final_model_filename = f"model_vertex_classification_{surf_type}_{data_name}_{surf_hemi}_{tag}_v{config.version}_gnn{config.gnn}_layers{config.gnn_layers}_heads{config.gat_heads}.pt"
elif config.gnn == 'gcn':
final_model_filename = f"model_vertex_classification_{surf_type}_{data_name}_{surf_hemi}_{tag}_v{config.version}_gnn{config.gnn}_layers{config.gnn_layers}.pt"
elif config.gnn == 'baseline':
final_model_filename = f"model_vertex_classification_{surf_type}_{data_name}_{surf_hemi}_{tag}_v{config.version}_gnn{config.gnn}.pt"
else:
assert False, 'update naming conventions for model file name'
torch.save(csrvcnet.state_dict(), os.path.join(model_dir, final_model_filename))
if __name__ == '__main__':
mp.set_start_method('spawn')
config = load_config()
if config.train_type == 'surfvc':
train_surfvc(config)