-
Notifications
You must be signed in to change notification settings - Fork 15
/
needle_in_haystack_with_mask.py
572 lines (499 loc) · 28.6 KB
/
needle_in_haystack_with_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
"""
This script is adapted from
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
# GPT-4
(
python -u needle_in_haystack.py --s_len 0 --e_len 128000\
--model_provider OpenAI\
--model_name gpt-4-1106-preview
--api_key $OPENAI_API_KEY
) 2>&1 | tee logs/eval_gpt_4_128k.log
# LLaMA 2 32K. Remember to download the model first
(
python -u needle_in_haystack.py --s_len 0 --e_len 128000\
--model_provider LLaMA\
--model_path ../../../Llama-2-7B-32K-Instruct
) 2>&1 | tee logs/eval_llama2_32k_instruct.log
# LongChat. Remember to download the model first
(
python -u needle_in_haystack.py --s_len 0 --e_len 128000\
--model_provider LLaMA\
--model_path /ML-A800/models/longchat-7b-v1.5-32k
) 2>&1 | tee logs/eval_longchat.log
# Our llama-2-7b-80k, requires 4*80G A100
# require you to download the model first
(
python -u needle_in_haystack.py --s_len 0 --e_len 128000\
--model_provider LLaMA\
--model_path ../../../llama-2-7b-80k
) 2>&1 | tee logs/eval_llama-2-7b-80k.log
"""
#import tiktoken
import os
import glob
import json
from transformers import AutoTokenizer, AutoConfig
import sys
import random
sys.path.append("./faiss_attn/")
from source.modeling_llama import LlamaForCausalLM, LlamaConfig
from source.modeling_qwen2 import Qwen2ForCausalLM
from source.modeling_mixtral import MixtralForCausalLM
from source.modeling_mistral import MistralForCausalLM
from source.modeling_phi3 import Phi3ForCausalLM
import numpy as np
import argparse
from rouge_score import rouge_scorer
scorer = rouge_scorer.RougeScorer(['rouge1', 'rougeL'], use_stemmer=True)
#from openai import OpenAI
from datetime import datetime, timezone
from collections import defaultdict
import time
import torch
def reset_rope(model, model_max_train_len, scaling_factor):
for l in model.model.layers:
l.self_attn.rotary_emb.scaling_factor = scaling_factor
l.self_attn.rotary_emb._set_cos_sin_cache(seq_len=model_max_train_len, device=l.self_attn.rotary_emb.inv_freq.device, dtype=torch.float32)
return
class LLMNeedleHaystackTester:
"""
This class is used to test the LLM Needle Haystack.
"""
def __init__(self,
needle="\nThe best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day.\n",
haystack_dir="PaulGrahamEssays",
retrieval_question="What is the best thing to do in San Francisco?",
results_version = 1,
context_lengths_min = 1000,
context_lengths_max = 128000,
context_lengths_num_intervals = 40,
context_lengths = None,
document_depth_percent_min = 0,
document_depth_percent_max = 100,
document_depth_percent_intervals = 10,
document_depth_percents = None,
document_depth_percent_interval_type = "linear",
model_provider = "OpenAI",
mask_topk=0,
anthropic_api_key = None,
model_name='',
model_name_suffix=None,
num_concurrent_requests = 1,
save_results = True,
save_contexts = True,
final_context_length_buffer = 200,
seconds_to_sleep_between_completions = None,
print_ongoing_status = True):
"""
:param needle: The needle to be found in the haystack. Default is None.
:param haystack_dir: The directory of text files to use as background context (or a haystack) in which the needle is to be found. Default is Paul Graham Essays.
:param retrieval_question: The question which with to prompt the model to do the retrieval.
:param results_version: In case you would like to try the same combination of model, context length, and depth % multiple times, change the results version other than 1
:param num_concurrent_requests: Due to volume, this object is set up to run concurrent requests, default = 1. Be careful of rate limits.
:param save_results: Whether or not you would like to save your contexts to file. Warning: These will get long! Default = True
:param save_contexts: Whether or not you would like to save your contexts to file. Warning: These will get long! Default is True.
:param final_context_length_buffer: The amount of cushion you'd like to leave off the input context to allow for the output context. Default 200 tokens
:param context_lengths_min: The minimum length of the context. Default is 1000.
:param context_lengths_max: The maximum length of the context. Default is 200000.
:param context_lengths_num_intervals: The number of intervals for the context length. Default is 35.
:param context_lengths: The lengths of the context. Default is None.
:param document_depth_percent_min: The minimum depth percent of the document. Default is 0.
:param document_depth_percent_max: The maximum depth percent of the document. Default is 100.
:param document_depth_percent_intervals: The number of intervals for the document depth percent. Default is 35.
:param document_depth_percents: The depth percentages of the document. Default is None.
:param document_depth_percent_interval_type: The type of interval for the document depth percent. Must be either 'linear' or 'sigmoid'. Default is 'linear'.
:param model_provider: The provider of the model. Must be either 'OpenAI' or 'Anthropic'. Default is 'OpenAI'.
:param openai_api_key: The API key for OpenAI. Default is None.
:param anthropic_api_key: The API key for Anthropic. Default is None.
:param model_name: The name of the model. Default is 'gpt-4-1106-preview'.
:param seconds_to_sleep_between_completions: The number of seconds to sleep between completions. Default is None.
:param print_ongoing_status: Whether or not to print the ongoing status. Default is True.
"""
if not needle or not haystack_dir or not retrieval_question:
raise ValueError("Needle, haystack, and retrieval_question must be provided.")
self.needle = needle
self.haystack_dir = haystack_dir
self.retrieval_question = retrieval_question
self.results_version = results_version
self.num_concurrent_requests = num_concurrent_requests
self.save_results = save_results
self.final_context_length_buffer = final_context_length_buffer
self.save_contexts = save_contexts
self.seconds_to_sleep_between_completions = seconds_to_sleep_between_completions
self.print_ongoing_status = print_ongoing_status
self.model_provider = model_provider
self.testing_results = []
self.head_counter = defaultdict(list)
self.mask_topk = mask_topk
if "CUDA_VISIBLE_DEVICES" in os.environ:
self.multi_gpus = len(os.environ["CUDA_VISIBLE_DEVICES"])>1
else:
self.multi_gpus = True
if("/" in model_name):
self.model_version = model_name.split("/")[-1]
else: self.model_version = model_name
if(model_name_suffix is not None): self.model_version += "_" + model_name_suffix
if context_lengths is None:
if context_lengths_min is None or context_lengths_max is None or context_lengths_num_intervals is None:
raise ValueError("Either context_lengths_min, context_lengths_max, context_lengths_intervals need to be filled out OR the context_lengths_list needs to be supplied.")
else:
self.context_lengths = np.round(np.linspace(context_lengths_min, context_lengths_max, num=context_lengths_num_intervals, endpoint=True)).astype(int)
else:
self.context_lengths = context_lengths
if document_depth_percents is None:
if document_depth_percent_min is None or document_depth_percent_max is None or document_depth_percent_intervals is None:
raise ValueError("Either document_depth_percent_min, document_depth_percent_max, document_depth_percent_intervals need to be filled out OR the document_depth_percents needs to be supplied.")
else:
if document_depth_percent_interval_type == 'linear':
self.document_depth_percents = np.round(np.linspace(document_depth_percent_min, document_depth_percent_max, num=document_depth_percent_intervals, endpoint=True)).astype(int)
elif document_depth_percent_interval_type == 'sigmoid':
self.document_depth_percents = [self.logistic(x) for x in np.linspace(document_depth_percent_min, document_depth_percent_max, document_depth_percent_intervals)]
else:
self.document_depth_percents = document_depth_percents
if document_depth_percent_interval_type not in [None, "linear", "sigmoid"]:
raise ValueError("document_depth_percent_interval_type must be either None, 'linear' or 'sigmoid'. If you'd like your own distribution give a list of ints in via document_depth_percent_intervals")
self.model_name = model_name
if(self.model_provider not in ["OpenAI", "Anthropic"]):
self.enc = AutoTokenizer.from_pretrained(model_name)
print("loading from %s" % model_name)
config = AutoConfig.from_pretrained(model_name)
self.layer_num, self.head_num = config.num_hidden_layers, config.num_attention_heads
print(f"layer number: {self.layer_num}, head number {self.head_num}")
if "Qwen" in self.model_version:
self.model_to_test = Qwen2ForCausalLM.from_pretrained(
model_name,torch_dtype="auto",device_map='auto',use_flash_attention_2="flash_attention_2"
)
elif "Mixtral" in self.model_version:
self.model_to_test = MixtralForCausalLM.from_pretrained(
model_name,torch_dtype="auto",device_map='auto',use_flash_attention_2="flash_attention_2",trust_remote_code=True,
)
elif "Mistral" in self.model_version:
self.model_to_test = MistralForCausalLM.from_pretrained(
model_name,torch_dtype="auto",device_map='auto',use_flash_attention_2="flash_attention_2",trust_remote_code=True,
)
elif "Phi3" in self.model_version:
self.model_to_test = Phi3ForCausalLM.from_pretrained(
model_name,torch_dtype="auto",device_map='auto',use_flash_attention_2="flash_attention_2",trust_remote_code=True,
)
else:
self.model_to_test = LlamaForCausalLM.from_pretrained(model_name,
use_flash_attention_2="flash_attention_2", torch_dtype=torch.bfloat16,device_map='auto').eval()
if 'llama-2-7b-80k' in self.model_version:
scaling_factor = 10
reset_rope(self.model_to_test, model_max_train_len=81920, scaling_factor=scaling_factor)
else:
self.model_to_test = OpenAI(api_key=openai_api_key)
if(self.model_provider == "OpenAI"):
self.enc = tiktoken.encoding_for_model(self.model_name)
elif(self.model_provider == "Anthropic"):
self.enc = Anthropic().get_tokenizer()
self.model_to_test_description = model_name
self.evaluation_model = None
if "CUDA_VISIBLE_DEVICES" in os.environ:
self.multi_gpus = len(os.environ["CUDA_VISIBLE_DEVICES"])>1
else:
self.multi_gpus = True
model_name = model_name.split('/')[-1]
if self.mask_topk!=0:
if model_name=='Mistral-7B-Instruct-v0.2':
model_name = "Mistral-7B-v0.2-hf"
with open(f"head_score/{model_name}.json", "r") as file:
stable_block_list = json.loads(file.readline())
stable_block_list = [(l[0], np.mean(l[1])) for l in stable_block_list.items()]
stable_block_list = sorted(stable_block_list, key=lambda x: x[1], reverse=True)
self.block_list = [[int(ll) for ll in l[0].split("-")] for l in stable_block_list][:100]
if self.mask_topk > 0:
print(f"masking out top {self.mask_topk} retrieval heads")
else:
print(f"masking out random {-self.mask_topk} heads")
else:
self.block_list = []
def logistic(self, x, L=100, x0=50, k=.1):
if x == 0:
return 0
if x == 100:
return 100
return np.round(L / (1 + np.exp(-k * (x - x0))), 3)
def bound_evaluate_and_log(self, *args):
self.evaluate_and_log(*args)
def run_test(self, args):
# Run through each iteration of context_lengths and depths
tasks = []
for context_length in self.context_lengths:
if context_length < args.s_len or context_length > args.e_len: continue
for depth_percent in self.document_depth_percents:
task = self.bound_evaluate_and_log(context_length, depth_percent)
def generate_prompt(self, context):
# Generate the prompt for the Anthropic model
# Replace the following line with the appropriate prompt structure
test_format=f"This is a very long story book: <book> {context} </book>.\n"
if self.model_version in ["Mistral-7B-Instruct-v0.2"]:
prompt = [
{"role": "user", "content": f"<book>{context}</book>\nBased on the content of the book, Question: {self.retrieval_question}\nAnswer:"},]
return prompt
def retrieval_calculate(self, attention_maxtrix,retrieval_score, inp, step_token,topk=1):
for layer_idx in range(32):
for head_idx in range(32):
values, idx = attention_maxtrix[layer_idx][0][head_idx][-1].topk(topk)
for v, i in zip(values, idx):
if self.needle_start <= i < self.needle_end and inp.item()==self.prompt_ids[i].item():
retrieval_score[layer_idx][head_idx][0] += 1/(self.needle_end - self.needle_start)
retrieval_score[layer_idx][head_idx][1] += step_token
break
def retrieval_head_accumulate(self, retrieval_score):
for layer_idx in range(32):
for head_idx in range(32):
self.head_counter[f"{layer_idx}-{head_idx}"].append(retrieval_score[layer_idx][head_idx][0])
def decode(self, q_outputs, inp, decode_len, block_list=None):
output, retrieval_score = [], [[[0, ''] for _ in range(32)] for _ in range(32)]
past_kv = q_outputs.past_key_values
for step_i in range(decode_len):
inp = inp.view(1, 1)
outputs = self.model_to_test(input_ids=inp, past_key_values=past_kv, use_cache=True, \
output_attentions=False, block_list=block_list)
past_kv = outputs.past_key_values
inp = outputs.logits[0, -1].argmax()
step_token = self.enc.convert_ids_to_tokens(inp.item())
output.append(inp.item())
#self.retrieval_calculate(outputs.attentions, retrieval_score, inp, step_token)
if step_token=='<0x0A>' or inp.item()==144: break
return output, retrieval_score
def find_needle_idx(self, needle):
needle_ids = self.enc(needle, add_special_tokens=False)["input_ids"]
#print( self.enc.decode(needle_ids, skip_special_tokens=False))
span_len = len(needle_ids)
for i in range(len(self.prompt_ids)):
token_span = self.prompt_ids[i : i + span_len]
span_ids = set(token_span.tolist())
overlap = float(len(span_ids.intersection(set(needle_ids)))) / len(set(needle_ids))
if(overlap > 0.9):
return i, i + span_len
return -1, -1
def construct_random_head(self, n):
results = []
seed_list = [i for i in range(32)]
random.shuffle(seed_list)
while len(results) < n:
l, h = random.choices(seed_list, k=2)
if (l, h) in results or (l, h) in self.block_list:
continue
else:
results.append((l, h))
return results
def evaluate_and_log(self, context_length, depth_percent):
# Checks to see if you've already checked a length/percent/version.
# This helps if the program stop running and you want to restart later
# Go generate the required length context and place your needle statement in
if self.mask_topk > 0:
block_list = self.block_list[:self.mask_topk]
save_name = f"{self.model_version}_block_top{self.mask_topk}"
elif self.mask_topk == 0:
block_list = None
save_name = self.model_version
else:
block_list = self.construct_random_head(-self.mask_topk)
save_name = f"{self.model_version}_block_random{-self.mask_topk}"
context = self.generate_context(context_length, depth_percent)
question = f"Based on the content of the book, Question: {self.retrieval_question}\nAnswer:"
if self.model_version in ["Mistral-7B-Instruct-v0.2", "Qwen1.5-14B-Chat"]:
prompt = [
{"role": "user", "content": f"<book>{context}</book>\nBased on the content of the book, Question: {self.retrieval_question}\nAnswer:"},
]
input_ids = self.enc.apply_chat_template(conversation=prompt, tokenize=True, add_generation_prompt=True, return_tensors='pt')
else:
input_context = context + question
input_ids = self.enc(input_context , return_tensors="pt")['input_ids']
test_start_time = time.time()
self.real_needle = "eat a sandwich and sit in Dolores Park on a sunny day"
#self.prompt_ids = torch.concat([context_ids, question_ids], dim=1)[0, :]
self.prompt_ids = input_ids[0, :]
if not self.multi_gpus:
input_ids = input_ids.to(self.model_to_test.device)
self.needle_start, self.needle_end = self.find_needle_idx(self.real_needle)
with torch.no_grad():
q_outputs = self.model_to_test(input_ids=input_ids[:,:-1], use_cache=True, return_dict=True)
output, retrieval_score = self.decode(q_outputs, input_ids[:,-1], 50, block_list=block_list)
response = self.enc.decode(output,skip_special_tokens=True).strip()
test_end_time = time.time()
test_elapsed_time = test_end_time - test_start_time
score = scorer.score(self.real_needle, response)['rouge1'].recall*100
results = {
'model' : self.model_to_test_description,
'context_length' : int(context_length),
'depth_percent' : float(depth_percent),
'version' : self.results_version,
'needle' : self.needle,
'model_response' : response,
'score' : score,
'test_duration_seconds' : test_elapsed_time,
'test_timestamp_utc' : datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S%z')
}
self.testing_results.append(results)
if self.print_ongoing_status:
print (f"-- Test Summary -- ")
print (f"Duration: {test_elapsed_time:.1f} seconds")
print (f"Context: {context_length} tokens")
print (f"Depth: {depth_percent}%")
print (f"Score: {score}")
print (f"Response: {response}\n")
context_file_location = f'{self.model_version.replace(".", "_")}_len_{context_length}_depth_{int(depth_percent*100)}'
if self.save_results:
# Save the context to file for retesting
if not os.path.exists(f'results/graph/{save_name}'):
os.makedirs(f'results/graph/{save_name}')
# Save the result to file for retesting
p = f'results/graph/{save_name}/{context_file_location}_results.json'
print("Writing at %s" % p)
with open(p, 'w') as f:
json.dump(results, f)
def result_exists(self, context_length, depth_percent):
"""
Checks to see if a result has already been evaluated or not
"""
results_dir = 'results/' + self.model_version
print("Searching existing results at %s" % results_dir)
if not os.path.exists(results_dir):
return False
for filename in os.listdir(results_dir):
if filename.endswith('.json'):
with open(os.path.join(results_dir, filename), 'r') as f:
result = json.load(f)
context_length_met = result['context_length'] == context_length
depth_percent_met = result['depth_percent'] == depth_percent
version_met = result.get('version', 1) == self.results_version
model_met = result['model'] == self.model_name
# import ipdb; ipdb.set_trace()
if context_length_met and depth_percent_met and version_met and model_met:
return True
return False
def generate_context(self, context_length, depth_percent):
# Load up tiktoken so we navigate tokens more easily
# Get your Paul Graham files loaded into a string
context = self.read_context_files()
# Truncate the Paul Graham essays to the context length you desire
context = self.encode_and_trim(context, context_length)
# Insert your random statement according to your depth percent
context = self.insert_needle(context, depth_percent, context_length)
return context
def encode_text_to_tokens(self, text):
if self.model_provider in ["OpenAI", "LLaMA", "Mistral", "GLM"]:
return self.enc.encode(text)
elif self.model_provider == "Anthropic":
# Assuming you have a different encoder for Anthropic
return self.enc.encode(text).ids
else:
raise ValueError("model_provider must be either 'OpenAI' or 'Anthropic'")
def insert_needle(self, context, depth_percent, context_length):
tokens_needle = self.encode_text_to_tokens(self.needle)
tokens_context = self.encode_text_to_tokens(context)
# Reducing the context length by 150 buffer. This is to account for system message, the user question, and response.
context_length -= self.final_context_length_buffer
# If your context + needle are longer than the context length (which it will be), then reduce tokens from the context by the needle length
if len(tokens_context) + len(tokens_needle) > context_length:
tokens_context = tokens_context[:context_length - len(tokens_needle)]
if depth_percent == 100:
# If your depth percent is 100 (which means your needle is the last thing in the doc), throw it at the end
tokens_new_context = tokens_context + tokens_needle
else:
# Go get the position (in terms of tokens) to insert your needle
insertion_point = int(len(tokens_context) * (depth_percent / 100))
# import ipdb; ipdb.set_trace()
# tokens_new_context represents the tokens before the needle
tokens_new_context = tokens_context[:insertion_point]
# We want to make sure that we place our needle at a sentence break so we first see what token a '.' is
if(self.model_provider in ["LLaMA", "LongLLaMA"]): period_tokens = [29889, 869]
elif(self.model_provider == "Mistral"): period_tokens = [842, 28723]
elif(self.model_provider == "GLM"): period_tokens = [918, 30930]
else: period_tokens = self.encode_text_to_tokens('.')
# Then we iteration backwards until we find the first period
while tokens_new_context and tokens_new_context[-1] not in period_tokens:
insertion_point -= 1
tokens_new_context = tokens_context[:insertion_point]
print("insertion at %d" % insertion_point)
# Once we get there, then add in your needle, and stick the rest of your context in on the other end.
# Now we have a needle in a haystack
tokens_new_context += tokens_needle + tokens_context[insertion_point:]
# Convert back to a string and return it
new_context = self.decode_tokens(tokens_new_context)
return new_context
def get_context_length_in_tokens(self, context):
if self.model_provider in ["OpenAI", "LLaMA", "Mistral", "GLM"]:
return len(self.enc.encode(context))
elif self.model_provider == "Anthropic":
# Assuming you have a different encoder for Anthropic
encoded = self.enc.encode(context)
return len(self.enc.encode(context).ids)
else:
raise ValueError("model_provider must be either 'OpenAI' or 'Anthropic'")
def read_context_files(self):
context = ""
max_context_length = max(self.context_lengths)
while self.get_context_length_in_tokens(context) < max_context_length:
for file in glob.glob(f"{self.haystack_dir}/*.txt"):
with open(file, 'r') as f:
context += f.read()
return context
def get_tokens_from_context(self, context):
if self.model_provider in ["OpenAI", "LLaMA", "Mistral", "GLM"]:
return self.enc.encode(context)
elif self.model_provider == "Anthropic":
# Assuming you have a different encoder for Anthropic
return self.enc.encode(context).ids
else:
raise ValueError("model_provider must be either 'OpenAI' or 'Anthropic'")
def decode_tokens(self, tokens, context_length=None):
if self.model_provider in ["OpenAI", "LLaMA", "Mistral", "GLM"]:
return self.enc.decode(tokens[:context_length])
elif self.model_provider == "Anthropic":
# Assuming you have a different decoder for Anthropic
return self.enc.decode(tokens[:context_length])
else:
raise ValueError("model_provider must be either 'OpenAI' or 'Anthropic'")
def encode_and_trim(self, context, context_length):
tokens = self.get_tokens_from_context(context)
if len(tokens) > context_length:
context = self.decode_tokens(tokens, context_length)
return context
def get_results(self):
return self.testing_results
def print_start_test_summary(self):
print ("\n")
print ("Starting Needle In A Haystack Testing...")
print (f"- Model: {self.model_name}")
print (f"- Context Lengths: {len(self.context_lengths)}, Min: {min(self.context_lengths)}, Max: {max(self.context_lengths)}")
print (f"- Document Depths: {len(self.document_depth_percents)}, Min: {min(self.document_depth_percents)}%, Max: {max(self.document_depth_percents)}%")
print (f"- Needle: {self.needle.strip()}")
print ("\n\n")
def start_test(self, args):
if self.print_ongoing_status:
self.print_start_test_summary()
#asyncio.run(self.run_test())
self.run_test(args)
if __name__ == "__main__":
# Tons of defaults set, check out the LLMNeedleHaystackTester's init for more info
parser = argparse.ArgumentParser()
parser.add_argument('-s', '--s_len', metavar='N', type=int, help='a number')
parser.add_argument('-e', '--e_len', metavar='N', type=int, help='a number')
parser.add_argument('--model_path', type=str, default=None, help='path to model')
parser.add_argument('--model_name', type=str, default=None, help='name of model')
parser.add_argument('--model_name_suffix', type=str, default=None, help='name of model')
parser.add_argument('--model_provider', type=str, default="LLaMA", help='which model to use')
parser.add_argument('--api_key', type=str, default="", help='OpenAI API Key')
parser.add_argument('--mask_topk', type=int, default=0, help='mask topk heads, input a negative value to mask random heads')
# parser = add_args(parser)
args = parser.parse_args()
if(args.model_path is not None):
assert(args.model_name is None)
model_name = args.model_path
else:
assert(args.model_name is not None)
ht = LLMNeedleHaystackTester(model_name=model_name,
model_name_suffix=args.model_name_suffix,
model_provider=args.model_provider,
save_contexts=True,
save_results=True,
mask_topk=args.mask_topk,
context_lengths_min=args.s_len,
context_lengths_max=args.e_len,
)
ht.start_test(args)