-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy patharm3dconstraint_diff.py
113 lines (92 loc) · 3.63 KB
/
arm3dconstraint_diff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from robots import loadTalosArm
from scipy.optimize import fmin_slsqp
import pinocchio
from pinocchio.utils import *
from numpy.linalg import norm,inv,pinv,eig,svd
m2a = lambda m: np.array(m.flat)
a2m = lambda a: np.matrix(a).T
LOCAL = pinocchio.ReferenceFrame.LOCAL
WORLD = pinocchio.ReferenceFrame.WORLD
robot = loadTalosArm()
robot.initDisplay(loadModel=True)
class OptimProblem:
def __init__(self,rmodel,gview=None):
self.rmodel = rmodel
self.rdata = rmodel.createData()
self.refEff = pinocchio.SE3( rotate('y',np.pi/4), # Target orientation
np.matrix([ -.3, 0.5, 0.2 ]).T) # Target position
self.idEff = rmodel.getFrameId('gripper_left_fingertip_2_link')
self.refQ = rmodel.neutralConfiguration
self.initDisplay(gview)
def cost(self,x):
q = a2m(x)
self.residuals = m2a(q-self.refQ)
return .5*sum(self.residuals**2)
def dCost_dx(self,x):
q = a2m(x)
dq = m2a(q-self.refQ)
return dq
def constraint(self,x):
q = a2m(x)
pinocchio.forwardKinematics(self.rmodel,self.rdata,q)
pinocchio.updateFramePlacements(self.rmodel,self.rdata)
refMeff = self.refEff.inverse()*self.rdata.oMf[self.idEff]
self.eq = m2a(pinocchio.log(refMeff).vector)
return self.eq.tolist()
def dConstraint_dx(self,x):
q = a2m(x)
pinocchio.forwardKinematics(self.rmodel,self.rdata,q)
pinocchio.computeJointJacobians(self.rmodel,self.rdata,q)
pinocchio.updateFramePlacements(self.rmodel,self.rdata)
refMeff = self.refEff.inverse()*self.rdata.oMf[self.idEff]
log_M = pinocchio.Jlog6(refMeff)
M_q = pinocchio.getFrameJacobian(self.rmodel,self.rdata,self.idEff,LOCAL)
self.Jeq = log_M*M_q
return self.Jeq
@property
def bounds(self):
# return [ (10*l,u) for l,u in zip(self.rmodel.lowerPositionLimit.flat,
# self.rmodel.upperPositionLimit.flat) ]
return [ (-10.,10) for i in range(self.rmodel.nq) ]
def initDisplay(self,gview=None):
self.gview = gview
if gview is None: return
self.gobj = "world/target6d"
self.gview.addBox(self.gobj,.1,0.05,0.025,[1,0,0,1])
self.gview.applyConfiguration(self.gobj,se3ToXYZQUAT(self.refEff))
self.gview.refresh()
def callback(self,x):
import time
q = a2m(x)
robot.display(q)
time.sleep(1e-2)
robot.q0 = robot.model.neutralConfiguration
pbm = OptimProblem(robot.model,robot.viewer.gui)
# --- NUMDIFF CHECK ------------------------------------
def numdiff(f,x,h=1e-6):
f0 = f(x)
nx,nf = len(x),len(f0)
dx = np.zeros(nx)
df_dx = np.zeros([nf,nx])
for i in range(nx):
dx[i] = h
df_dx[:,i] = (f(x+dx)-f0)/h
dx[i] = 0
return df_dx
x = np.random.rand(robot.model.nq)*2-1
def costResiduals(x):
pbm.cost(x)
return pbm.residuals
assert( norm( pbm.dCost_dx(x) - np.dot( numdiff(costResiduals,x).T,costResiduals(x) ) ) <1e-6 )
assert( norm( pbm.dConstraint_dx(x) - numdiff(lambda x:np.array(pbm.constraint(x)),x) ) <1e-6 )
# --- NUMDIFF CHECK ------------------------------------
#x0 = np.random.rand(robot.model.nq)
x0 = np.array([ .7,.9,.8,.5,.9,.7,.1])
result = fmin_slsqp(x0 = x0,
func = pbm.cost,
fprime = pbm.dCost_dx,
f_eqcons = pbm.constraint,
fprime_eqcons = pbm.dConstraint_dx,
bounds = pbm.bounds,
callback = pbm.callback)
qopt = a2m(result)