-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
executable file
·50 lines (41 loc) · 1.52 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
'''
Image utilities to avoid pytorch transforms.
Additional image transformations for webapps. e.g. image2string.
'''
import base64, numbers
from PIL import Image
from io import BytesIO
from PIL import ImageOps
def rotate_image_if_needed(img):
img = ImageOps.exif_transpose(img)
return img
def image2string(img, format = 'jpeg'):
temporary_stream = BytesIO()
img.save(temporary_stream, format)
image_b64 = base64.b64encode(temporary_stream.getvalue())
return str(image_b64, 'utf-8')
# From torchvision functional resize.
def resize_image(img, size, interpolation = Image.BILINEAR):
w, h = img.size
if (w <= h and w == size) or (h <= w and h == size):
return img
if w < h:
ow = size
oh = int(size * h / w)
return img.resize((ow, oh), interpolation)
else:
oh = size
ow = int(size * w / h)
return img.resize((ow, oh), interpolation)
# From torchvision functional crop.
def crop_image(img, top, left, height, width):
return img.crop((left, top, left + width, top + height))
# From torchvision functional center_crop.
def center_crop_image(img, output_size):
if isinstance(output_size, numbers.Number):
output_size = (int(output_size), int(output_size))
image_width, image_height = img.size
crop_height, crop_width = output_size
crop_top = int(round((image_height - crop_height) / 2.))
crop_left = int(round((image_width - crop_width) / 2.))
return crop_image(img, crop_top, crop_left, crop_height, crop_width)