-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathosim2.py
225 lines (181 loc) · 8.79 KB
/
osim2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#!/usr/bin/env python
from util import *
from regress import *
from loaddata import *
import gc
from collections import defaultdict
import argparse
halfdays = ['20111125', '20120703', '20121123', '20121224']
breaks = ['20110705', '20120102', '20120705', '20130103']
parser = argparse.ArgumentParser(description='G')
parser.add_argument("--start",action="store",dest="start",default=None)
parser.add_argument("--end",action="store",dest="end",default=None)
parser.add_argument("--fill",action="store",dest='fill',default='mid')
parser.add_argument("--slipbps",action="store",dest='slipbps',default=0.0001)
parser.add_argument("--fcast",action="store",dest='fcast',default=None)
args = parser.parse_args()
participation = 0.015
cols = ['split', 'div', 'close', 'iclose', 'bvwap_b', 'bvolume', 'tradable_med_volume_21_y', 'close_y']
cache_df = load_cache(dateparser.parse(args.start), dateparser.parse(args.end), cols )
cache_df['bvolume_d'] = cache_df['bvolume'].groupby(level='sid').diff()
cache_df.loc[ cache_df['bvolume_d'] < 0, 'bvolume_d'] = cache_df['bvolume']
cache_df = push_data(cache_df, 'bvolume_d')
cache_df['max_trade_size'] = cache_df[ 'bvolume_d_n' ] * cache_df['iclose'] * participation
cache_df['min_trade_size'] = -1 * cache_df['max_trade_size']
cache_df = push_data(cache_df, 'bvwap_b')
cache_df = push_data(cache_df, 'iclose')
trades_df = None
forecasts = list()
fcasts = args.fcast.split(",")
fcast_rets = dict()
for pair in fcasts:
fdir, fcast = pair.split(":")
print "Loading {} {}".format(fdir, fcast)
forecasts.append(fcast)
retdf = pd.read_csv("./" + fdir + "/rets.txt", names=['date', 'ret'], sep=" ")
retdf['date'] = pd.to_datetime(retdf['date'])
retdf.set_index('date', inplace=True)
retdf['rollingret'] = pd.rolling_sum(retdf['ret'], 10).shift(1)
fcast_rets[fcast] = retdf
flist = list()
for ff in sorted(glob.glob( "./" + fdir + "/opt/opt." + fcast + ".*.csv")):
m = re.match(r".*opt\." + fcast + "\.(\d{8})_\d{6}.csv", str(ff))
if m is None: continue
d1 = int(m.group(1))
if d1 < int(args.start) or d1 > int(args.end): continue
print "Loading {}".format(ff)
flist.append(pd.read_csv(ff, parse_dates=True))
fcast_trades_df = pd.concat(flist)
fcast_trades_df['iclose_ts'] = pd.to_datetime(fcast_trades_df['iclose_ts'])
fcast_trades_df = fcast_trades_df.set_index(['iclose_ts', 'sid']).sort()
if trades_df is None:
trades_df = fcast_trades_df
trades_df['traded_' + fcast] = trades_df['traded']
else:
trades_df = pd.merge(trades_df, fcast_trades_df, how='outer', left_index=True, right_index=True, suffixes=['', '_dead'])
trades_df['traded_' + fcast] = trades_df['traded_dead']
trades_df = remove_dup_cols(trades_df)
trades_df = pd.merge(trades_df.reset_index(), cache_df.reset_index(), how='left', left_on=['iclose_ts', 'sid'], right_on=['iclose_ts', 'sid'], suffixes=['', '_dead'])
trades_df = remove_dup_cols(trades_df)
trades_df.set_index(['iclose_ts', 'sid'], inplace=True)
cache_df = None
max_dollars = 1e6
max_adv = 0.02
trades_df['max_notional'] = (trades_df['tradable_med_volume_21_y'] * trades_df['close_y'] * max_adv).clip(0, max_dollars)
trades_df['min_notional'] = (-1 * trades_df['tradable_med_volume_21_y'] * trades_df['close_y'] * max_adv).clip(-max_dollars, 0)
trades_df['cash'] = 0
trades_df['shares'] = 0
trades_df['pnl'] = 0
trades_df['cum_pnl'] = 0
trades_df['day_pnl'] = 0
if args.fill == "vwap":
print "Filling at vwap..."
trades_df['fillprice'] = trades_df['bvwap_b_n']
print "Bad count: {}".format( len(trades_df) - len(trades_df[ trades_df['fillprice'] > 0 ]) )
trades_df.ix[ (trades_df['fillprice'] <= 0) | (trades_df['fillprice'].isnull()), 'fillprice' ] = trades_df['iclose']
else:
print "Filling at mid..."
trades_df['fillprice'] = trades_df['iclose']
trades_df.replace([np.inf, -np.inf], np.nan, inplace=True)
#print trades_df
fcast_weights = dict()
for fcast in forecasts:
fcast_weights[fcast] = .5
day_bucket = {
'not' : defaultdict(int),
'pnl' : defaultdict(int),
'trd' : defaultdict(int),
}
lastgroup_df = None
lastday = None
pnl_last_day_tot = 0
totslip = 0
for ts, group_df in trades_df.groupby(level='iclose_ts'):
dayname = ts.strftime("%Y%m%d")
timename = ts.strftime("%H%M")
if dayname in halfdays and int(timename) > 1245:
continue
if lastgroup_df is not None:
group_df = pd.merge(group_df.reset_index(), lastgroup_df.reset_index(), how='left', left_on=['sid'], right_on=['sid'], suffixes=['', '_last'])
group_df['iclose_ts'] = ts
group_df.set_index(['iclose_ts', 'sid'], inplace=True)
if dayname != lastday:
if dayname in breaks:
group_df['cash_last'] += group_df['shares_last'] * group_df['close_y']
group_df['shares_last'] = 0
group_df['cash_last'] += group_df['shares_last'] * group_df['div'].fillna(0)
group_df['shares_last'] *= group_df['split'].fillna(1)
else:
group_df['shares_last'] = 0
group_df['cash_last'] = 0
group_df['traded'] = 0
ii = 0
for fcast in forecasts:
weight = fcast_weights[fcast]
if dayname != lastday:
retdf = fcast_rets[fcast]
try:
last_ret = retdf.ix[ pd.to_datetime(dayname), 'rollingret']
if last_ret > 0:
weight *= 1.1
weight = min(weight, 1.0)
else:
weight *= .9
weight = max(weight, .1)
except:
pass
weight = 1
print "{}: {}".format(fcast, weight)
fcast_weights[fcast] = weight
group_df['traded'] = group_df['traded'] + group_df['traded_' + fcast] * weight
ii += 1
group_df['max_up'] = group_df['max_notional'] - group_df['shares_last'] * group_df['iclose']
group_df['max_down'] = group_df['min_notional'] - group_df['shares_last'] * group_df['iclose']
group_df['traded'] = group_df[ ['traded', 'max_trade_size', 'max_up'] ].min(axis=1)
group_df['traded'] = group_df[ ['traded', 'min_trade_size', 'max_down'] ].max(axis=1)
group_df['shares_traded'] = group_df['traded'] / group_df['fillprice']
group_df['shares'] = group_df['shares_traded'] + group_df['shares_last'].fillna(0)
group_df['cash'] = -1.0 * group_df['shares_traded'] * group_df['fillprice'] + group_df['cash_last'].fillna(0)
markPrice = 'iclose_n'
# if ts.strftime("%H%M") == "1530" or (dayname in halfdays and timename == "1230"):
if ts.strftime("%H%M") == "1545" or (dayname in halfdays and timename == "1245"):
markPrice = 'close'
SLIPBPS = float(args.slipbps)
group_df['slip'] = np.abs(group_df['traded']).fillna(0) * SLIPBPS
totslip += group_df['slip'].sum()
group_df['cash'] = group_df['cash'] - group_df['slip']
group_df['pnl'] = group_df['shares'] * group_df[markPrice] + group_df['cash']
notional = np.abs(group_df['shares'] * group_df[markPrice]).dropna().sum()
pnl_tot = group_df['pnl'].dropna().sum()
traded = np.abs(group_df['traded']).fillna(0).sum()
day_bucket['trd'][dayname] += traded
# try:
# print group_df.xs(testid, level=1)[['target', 'traded', 'cash', 'shares', 'close', 'iclose', 'shares_last', 'cash_last']]
# except KeyError:
# pass
# print group_df['shares'].describe()
# print group_df[markPrice].describe()
if markPrice == 'close' and notional > 0 and dayname not in halfdays:
delta = pnl_tot - pnl_last_day_tot
ret = delta/notional
daytraded = day_bucket['trd'][dayname]
print "{}: {} {} {} {:.4f} {:.2f} {:.2f} {:.2f}".format(ts, notional, pnl_tot, delta, ret, daytraded, daytraded/notional, totslip )
day_bucket['pnl'][dayname] = delta
day_bucket['not'][dayname] = notional
pnl_last_day_tot = pnl_tot
lastgroup_df = group_df.reset_index()[[ 'shares', 'cash', 'pnl', 'sid', 'target']]
lastday = dayname
nots = pd.DataFrame([ [d,v] for d, v in sorted(day_bucket['not'].items()) ], columns=['date', 'notional'])
nots.set_index(keys=['date'], inplace=True)
pnl_df = pd.DataFrame([ [d,v] for d, v in sorted(day_bucket['pnl'].items()) ], columns=['date', 'pnl'])
pnl_df.set_index(['date'], inplace=True)
rets = pd.merge(pnl_df, nots, left_index=True, right_index=True)
print "Total Pnl: ${:.0f}K".format(rets['pnl'].sum()/1000.0)
rets['day_rets'] = rets['pnl'] / rets['notional']
rets['day_rets'].replace([np.inf, -np.inf], np.nan, inplace=True)
rets['day_rets'].fillna(0, inplace=True)
rets['cum_ret'] = (1 + rets['day_rets']).dropna().cumprod()
mean = rets['day_rets'].mean() * 252
std = rets['day_rets'].std() * math.sqrt(252)
sharpe = mean/std
print "Day mean: {:.4f} std: {:.4f} sharpe: {:.4f} avg Notional: ${:.0f}K".format(mean, std, sharpe, rets['notional'].mean()/1000.0)