From 07a7551e212b5643c8d1c6ed6a685e0c693317a8 Mon Sep 17 00:00:00 2001 From: "zhangyu.0602" Date: Wed, 14 Jun 2023 18:57:10 +0800 Subject: [PATCH] Improving alignment consistency between Latex and regular text --- .../app/samples/latex/LatexInlineSample.java | 38 +++++++++++++++++-- .../latex/JLatexInlineAsyncDrawableSpan.java | 9 +++-- 2 files changed, 40 insertions(+), 7 deletions(-) diff --git a/app-sample/src/main/java/io/noties/markwon/app/samples/latex/LatexInlineSample.java b/app-sample/src/main/java/io/noties/markwon/app/samples/latex/LatexInlineSample.java index f3aa4e51..81850188 100644 --- a/app-sample/src/main/java/io/noties/markwon/app/samples/latex/LatexInlineSample.java +++ b/app-sample/src/main/java/io/noties/markwon/app/samples/latex/LatexInlineSample.java @@ -20,9 +20,41 @@ public class LatexInlineSample extends MarkwonTextViewSample { @Override public void render() { final String md = "" + - "# LaTeX inline\n" + - "hey = $$" + LatexHolder.LATEX_BANGLE + "$$,\n" + - "that's it!"; + "Here are some common mathematical formulas:\n" + + "\n" + + "Quadratic formula: $$ ax^2+bx+c=0 $$\n" + + "\n" + + "Pythagorean theorem: $$ a^2+b^2=c^2 $$\n" + + "\n" + + "Euler's formula: $$e^{ix}=\\cos{x}+i\\sin{x}$$\n" + + "\n" + + "Trigonometric identity: $$\\sin^2{x}+\\cos^2{x}=1$$\n" + + "\n" + + "Taylor series expansion: $$f(x)=\\sum_{n=0}^{\\infty} \\frac{f^{(n)}(a)}{n!}(x-a)^n$$\n" + + "\n" + + "Matrix multiplication: $$C_{i,j}=\\sum_{k=1}^{n}A_{i,k}B_{k,j}$$\n" + + "\n" + + "Riemann hypothesis: $$\\zeta(s)=\\sum_{n=1}^{\\infty} \\frac{1}{n^s}=\\frac{1}{1-p^{-s}}\\prod_{\\text{prime }p} \\frac{1}{1-p^{-s}}$$\n" + + "\n" + + "Euler's identity: $$e^{i\\pi}+1=0$$\n" + + "\n" + + "Fermat's Last Theorem: $$a^n+b^n=c^n$$ has no integer solutions when $$n>2$$\n" + + "\n" + + "Riemann hypothesis: $$\\zeta(s)=\\sum_{n=1}^\\infty\\frac{1}{n^s}$$ has all its zeros on the line $$s=\\frac{1}{2}$$ when $$s=\\frac{1}{2}+it$$\n" + + "\n" + + "Einstein field equations: $$G_{\\mu\\nu}=8\\pi T_{\\mu\\nu}$$\n" + + "\n" + + "Black-Scholes theorem: Any directed graph can be decomposed into strongly connected components\n" + + "\n" + + "P vs. NP conjecture by American mathematician Andrew Wiles: NP problems cannot be solved in polynomial time\n" + + "\n" + + "Stirling's formula: $$n!=\\sqrt{2\\pi n}\\left(\\frac{n}{e}\\right)^n$$\n" + + "\n" + + "Mobius inversion formula: $$f(n)=\\sum_{d|n}g(d)\\Leftrightarrow g(n)=\\sum_{d|n}\\mu(d)f\\left(\\frac{n}{d}\\right)$$\n" + + "\n" + + "Fourier series: $$f(x)=\\frac{a_0}{2}+\\sum_{n=1}^\\infty\\left(a_n\\cos\\frac{n\\pi x}{L}+b_n\\sin\\frac{n\\pi x}{L}\\right)$$\n" + + "\n" + + "Riemann integral: $$\\int_0^\\infty\\frac{x^{s-1}}{e^x-1}dx=\\Gamma(s)\\zeta(s)$$"; // inlines must be explicitly enabled and require `MarkwonInlineParserPlugin` final Markwon markwon = Markwon.builder(context) diff --git a/markwon-ext-latex/src/main/java/io/noties/markwon/ext/latex/JLatexInlineAsyncDrawableSpan.java b/markwon-ext-latex/src/main/java/io/noties/markwon/ext/latex/JLatexInlineAsyncDrawableSpan.java index 0edda9d3..7e582430 100644 --- a/markwon-ext-latex/src/main/java/io/noties/markwon/ext/latex/JLatexInlineAsyncDrawableSpan.java +++ b/markwon-ext-latex/src/main/java/io/noties/markwon/ext/latex/JLatexInlineAsyncDrawableSpan.java @@ -40,12 +40,13 @@ public int getSize( final Rect rect = drawable.getBounds(); if (fm != null) { - final int half = rect.bottom / 2; - fm.ascent = -half; - fm.descent = half; + Paint.FontMetricsInt originFont = paint.getFontMetricsInt(); + int diff = rect.height() - (originFont.descent - originFont.ascent); + fm.descent = originFont.descent + diff / 2; + fm.ascent = fm.descent - rect.height(); fm.top = fm.ascent; - fm.bottom = 0; + fm.bottom = fm.descent; } size = rect.right;