-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathosmotic_edgeR_script.R
175 lines (134 loc) · 7.29 KB
/
osmotic_edgeR_script.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
library(limma)
library(edgeR)
library(magrittr)
#library(NMF)
library(stringr)
##read in counts, alter/fix column names.
fcc <- read.table("/home/nreid/rnaseq/featurecounts/osmotic.counts.meta.fc",stringsAsFactors = FALSE,header = TRUE)
colnames(fcc) <- gsub("X.home.nreid.rnaseq.alignments.merged.","",colnames(fcc))
colnames(fcc) <- gsub(".bam","",colnames(fcc))
##separate counts from metadata
fcc2 <- as.matrix(fcc[,7:136])
##table of factors. process them.
tags <- read.table("/home/nreid/rnaseq/bwa.bams.list")
tags <- gsub("/home/nreid/rnaseq/alignments/merged/","",tags[,1])
tags <- gsub(".bam","",tags)
tags2 <- str_extract(tags,".$")
tags3 <- str_extract(tags,regex("[^_]+(?=_.$)"))
tags4 <- str_extract(tags,regex(".*(?=_[^_]+_.$)"))
tags5 <- c("m","f","b","b","m","m","m","f","f","f","b","f","f","m","m","f","m")
names(tags5) <- unique(tags4)
tags <- cbind(tags4,tags3,tags5[tags4],tags2)
colnames(tags) <- c("species","treatment","physiology","replicate")
facs <- paste(tags[,1],tags[,2],sep = ".")
##image counts
image(log(fcc2[order(rowSums(fcc2),decreasing = T),]))
##remove misidentified fish:
#F. diaphanus FW 1 is actually a heteroclitus.
#F. sciadicus BW 2 is actually a chrysotus.
toss <- which(colnames(fcc2)%in%c("F_diaphanus_FW_1","F_sciadicus_BW_2"))
fcc <- fcc[,-(toss+6)]
fcc2 <- fcc2[,-toss]
tags <- tags[-toss,]
facs <- facs[-toss]
##create annotation matrix
annot <- fcc[,1:6]
annot[,2] <- gsub(";.*","",annot[,2])
annot <- annot[,-(3:5)]
#create design matrix
TS <- factor(paste(tags[,1],tags[,2],sep = "."))
design <- model.matrix(~0+TS)
colnames(design) <- levels(TS)
###start analysis. turn counts into DGEList object.
fcc3 <- DGEList(counts = fcc2, genes = annot, group = TS)
##toss out some low coverage genes
keep <- rowSums(cpm(fcc3))>20
fcc3 <- fcc3[keep,,keep.lib.sizes=FALSE]
dim(fcc3)
##TMM normalization. creates sample weights as object in fcc3 list.
fcc3 <- calcNormFactors(fcc3)
image(log(fcc3$counts[order(rowSums(fcc3$counts),decreasing = T),]))
##MDS plot of samples for 20 most variable genes
plotMDS(fcc3,labels = colnames(fcc2),top = 10000, col = as.numeric(factor(tags[,3])), gene.selection = "common",prior.count = 5)
##estimate GLM dispersions
fcc3 <- estimateGLMCommonDisp(fcc3, design, verbose=TRUE)
fcc3 <- estimateGLMTrendedDisp(fcc3, design)
fcc3 <- estimateGLMTagwiseDisp(fcc3, design)
##fit glm model
fit <- glmFit(fcc3,design)
fitQL <- glmQLFit(fcc3, design, robust=TRUE)
##contrasts to be evaluated.
##YOU FORGOT ZEBRINUS!
cont.matrix <- makeContrasts(
MDPL_FvB = (F_heteroclitus_MDPL.FW-F_heteroclitus_MDPL.BW),
MDPP_FvB = (F_heteroclitus_MDPP.FW-F_heteroclitus_MDPP.BW),
PLvPP_FvB =(F_heteroclitus_MDPL.FW-F_heteroclitus_MDPL.BW)-(F_heteroclitus_MDPP.FW-F_heteroclitus_MDPP.BW),
M_FvB = (A_xenica.FW-A_xenica.BW)+(F_grandis.FW-F_grandis.BW)+(F_heteroclitus_MDPL.FW-F_heteroclitus_MDPL.BW)+(F_heteroclitus_MDPP.FW-F_heteroclitus_MDPP.BW)+(F_similis.FW-F_similis.BW)+(L_parva.FW-L_parva.BW),
M_FvT = (A_xenica.FW-A_xenica.transfer)+(F_grandis.FW-F_grandis.transfer)+(F_heteroclitus_MDPL.FW-F_heteroclitus_MDPL.transfer)+(F_heteroclitus_MDPP.FW-F_heteroclitus_MDPP.transfer)+(F_similis.FW-F_similis.transfer)+(L_parva.FW-L_parva.transfer),
M_treatment = (A_xenica.FW-A_xenica.BW)+(F_grandis.FW-F_grandis.BW)+(F_heteroclitus_MDPL.FW-F_heteroclitus_MDPL.BW)+(F_heteroclitus_MDPP.FW-F_heteroclitus_MDPP.BW)+(F_similis.FW-F_similis.BW)+(L_parva.FW-L_parva.BW)+(A_xenica.FW-A_xenica.transfer)+(F_grandis.FW-F_grandis.transfer)+(F_heteroclitus_MDPL.FW-F_heteroclitus_MDPL.transfer)+(F_heteroclitus_MDPP.FW-F_heteroclitus_MDPP.transfer)+(F_similis.FW-F_similis.transfer)+(L_parva.FW-L_parva.transfer),
F_FvB = (F_catanatus.FW-F_catanatus.BW) + (F_notatus.FW-F_notatus.BW) + (F_olivaceous.FW-F_olivaceous.BW) + (F_rathbuni.FW-F_rathbuni.BW) + (F_sciadicus.FW-F_sciadicus.BW) + (L_goodei.FW-L_goodei.BW),
F_FvT = (F_catanatus.FW-F_catanatus.transfer) + (F_notatus.FW-F_notatus.transfer) + (F_olivaceous.FW-F_olivaceous.transfer) + (F_rathbuni.FW-F_rathbuni.transfer) + (F_sciadicus.FW-F_sciadicus.transfer) + (L_goodei.FW-L_goodei.transfer),
FvB = ((A_xenica.FW-A_xenica.BW)+(F_grandis.FW-F_grandis.BW)+(F_heteroclitus_MDPL.FW-F_heteroclitus_MDPL.BW)+(F_heteroclitus_MDPP.FW-F_heteroclitus_MDPP.BW)+(F_similis.FW-F_similis.BW)+(L_parva.FW-L_parva.BW) + (F_catanatus.FW-F_catanatus.BW) + (F_notatus.FW-F_notatus.BW) + (F_olivaceous.FW-F_olivaceous.BW) + (F_rathbuni.FW-F_rathbuni.BW) + (F_sciadicus.FW-F_sciadicus.BW) + (L_goodei.FW-L_goodei.BW))/12,
MvB_FvB = ((A_xenica.FW-A_xenica.BW)+(F_grandis.FW-F_grandis.BW)+(F_heteroclitus_MDPL.FW-F_heteroclitus_MDPL.BW)+(F_heteroclitus_MDPP.FW-F_heteroclitus_MDPP.BW)+(F_similis.FW-F_similis.BW)+(L_parva.FW-L_parva.BW))/6 - ((F_catanatus.FW-F_catanatus.BW) + (F_notatus.FW-F_notatus.BW) + (F_olivaceous.FW-F_olivaceous.BW) + (F_rathbuni.FW-F_rathbuni.BW) + (F_sciadicus.FW-F_sciadicus.BW) + (L_goodei.FW-L_goodei.BW))/6,
levels = design
)
##evaluate all contrasts. store results. FOR LRT
ncont <- dim(cont.matrix)[2]
lrt <- list()
for(i in 1:ncont){
lrt[[i]] <- glmLRT(fit, contrast=cont.matrix[,i])
cat(i," ")
}
outvals <- list()
outvals[["FDR"]] <- numeric(0)
outvals[["logFC"]] <- numeric(0)
outvals[["logCPM"]] <- numeric(0)
for(i in 1:ncont){
tmp <- topTags(lrt[[i]],sort.by="none",n=dim(fcc3)[1])
outvals[["FDR"]] <- cbind(outvals[["FDR"]],tmp$table$FDR)
outvals[["logFC"]] <- cbind(outvals[["logFC"]],tmp$table$logFC)
outvals[["logCPM"]] <- cbind(outvals[["logCPM"]],tmp$table$logCPM)
}
outvals[["sig"]] <- rowSums(outvals[["FDR"]]<0.05)>0
resum <- table(apply(outvals[["FDR"]]<0.05,MAR=1,FUN=function(x){paste(as.numeric(x),collapse=".")}))
resum <- cbind(do.call(rbind,strsplit(split="\\.",names(resum))),as.numeric(resum))
class(resum)<-"numeric"
resum<-resum[order(resum[,ncont+1],decreasing=TRUE),]
cbind(colnames(cont.matrix),colSums(outvals[["FDR"]]<0.05))
###evaluate all contrasts. store results. FOR QL F test
qlf <- list()
for(i in 1:ncont){
qlf[[i]] <- glmQLFTest(fitQL, contrast=cont.matrix[,i])
cat(i," ")
}
outvalsQL <- list()
outvalsQL[["FDR"]] <- numeric(0)
outvalsQL[["logFC"]] <- numeric(0)
outvalsQL[["logCPM"]] <- numeric(0)
for(i in 1:ncont){
tmp <- topTags(qlf[[i]],sort.by="none",n=dim(fcc3)[1])
outvalsQL[["FDR"]] <- cbind(outvalsQL[["FDR"]],tmp$table$FDR)
outvalsQL[["logFC"]] <- cbind(outvalsQL[["logFC"]],tmp$table$logFC)
outvalsQL[["logCPM"]] <- cbind(outvalsQL[["logCPM"]],tmp$table$logCPM)
}
outvalsQL[["sig"]] <- rowSums(outvalsQL[["FDR"]]<0.05)>0
resumQL <- table(apply(outvalsQL[["FDR"]]<0.05,MAR=1,FUN=function(x){paste(as.numeric(x),collapse=".")}))
resumQL <- cbind(do.call(rbind,strsplit(split="\\.",names(resumQL))),as.numeric(resumQL))
class(resumQL)<-"numeric"
resumQL<-resumQL[order(resumQL[,ncont+1],decreasing=TRUE),]
cbind(colnames(cont.matrix),colSums(outvalsQL[["FDR"]]<0.05),colSums(outvals[["FDR"]]<0.05))
##create table of treatment mean CPM
tmeans <- c()
for(i in unique(tags[,1])){
for(j in unique(tags[,2])){
tmeans <- cbind(
tmeans,
rowSums(cpm(fcc3[,tags[,1]==i&tags[,2]==j]))/sum(tags[,1]==i&tags[,2]==j)
)
}
}
tmeans <- tmeans[,colSums(is.nan(tmeans))<1]
colnames(tmeans) <- unique(paste(tags[,1],tags[,2],sep="_"))
#save results
save.image(file="/home/nreid/rnaseq/osmoticALL.Rdata")
save(fit,tmeans,lrt,outvals,fcc3,tags,file="/home/nreid/rnaseq/edgeR_genes.Robj")