- Download and install Anaconda Python from https://www.continuum.io/anaconda
-
Install Visual Studio 2015 Community Edition (CE) or higher
-
If you have an Nvidia GPU, install the following two libraries:
- CUDA SDK and Toolkit
- cuDNN Library
-
Add location of
cl.exe
to PATH- Create a system variable (e.g. CL_PATH -> C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\bin)
- Add %CL_PATH% to PATH
- Create a system variable (e.g. CL_PATH -> C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\bin)
-
Add location of
nvcc.exe
to PATH- Create s system variable (e.g. CUDA_PATH -> C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0)
- Add %CUDA_PATH%\bin to PATH
- Create s system variable (e.g. CUDA_PATH -> C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0)
-
Because Theano requires paths without spaces, we need to copy files from cuDNN install to a path w/o spaces
- Create an "include" folder in your home directory (e.g. C:/Users/n097912/CUDA/include)
- Copy files from C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\include to folder created in Step 1
- Create an "lib" folder in your home directory (e.g. C:/Users/n097912/CUDA/lib64)
- Copy files from C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64 to folder created in Step 3
-
(Optional) Install NVIDIA Nsight Visual Studio Edition
- See https://conda.io/docs/user-guide/getting-started.html#managing-environments for reference
- Create conda environment
conda create --name deepqrl python=2.7
- Activate conda environment
activate deepqrl
- Download and run the OpenCV 3.2 installer (which just extracts OpenCV to the folder of your choosing)
- Add the OpenCV bin dir to PATH
- Copy the cv2.pyd folder to the site-packages directory in your Anaconda environment
-
Install requirements and optional packages
conda install numpy scipy mkl-service libpython <m2w64-toolchain> <nose> <nose-parameterized> <sphinx> <pydot-ng>
-
Install Theano
conda install theano
-
Configure Theano to use the CUDA SDK
- Example .theanorc file contents:
[global] floatX = float32 device = gpu [dnn] include_path=C:/Users/n097912/CUDA/include library_path=C:/Users/n097912/CUDA/lib64
- Example .theanorc file contents:
-
Install the latest version for compatiblity with the latest version of Theano (see aigamedev/scikit-neuralnetwork#235)
pip install --upgrade https://github.com/Lasagne/Lasagne/archive/master.zip
-
Install pylearn2 package
conda install pylearn2
- Follow the instructions from Islandman93's port to build with Visual Studio: https://github.com/Islandman93/Arcade-Learning-Environment