-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathopencv_read_tf_graph.py
121 lines (92 loc) · 3.38 KB
/
opencv_read_tf_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
##https://www.arunponnusamy.com/yolo-object-detection-opencv-python.html
# import required packages
import cv2
import argparse
import numpy as np
# handle command line arguments
ap = argparse.ArgumentParser()
ap.add_argument('-i', '--image', required=True,
help = 'path to input image')
ap.add_argument('-c', '--config', required=True,
help = 'path to yolo config file')
ap.add_argument('-w', '--weights', required=True,
help = 'path to yolo pre-trained weights')
ap.add_argument('-cl', '--classes', required=True,
help = 'path to text file containing class names')
args = ap.parse_args()
# read input image
image = cv2.imread(args.image)
Width = image.shape[1]
Height = image.shape[0]
scale = 0.00392
# read class names from text file
classes = None
with open(args.classes, 'r') as f:
classes = [line.strip() for line in f.readlines()]
# generate different colors for different classes
COLORS = np.random.uniform(0, 255, size=(len(classes), 3))
# read pre-trained model and config file
net = cv2.dnn.readNet(args.weights, args.config)
# create input blob
blob = cv2.dnn.blobFromImage(image, scale, (416,416), (0,0,0), True, crop=False)
# set input blob for the network
net.setInput(blob)
# function to get the output layer names
# in the architecture
def get_output_layers(net):
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
return output_layers
# function to draw bounding box on the detected object with class name
def draw_bounding_box(img, class_id, confidence, x, y, x_plus_w, y_plus_h):
label = str(classes[class_id])
color = COLORS[class_id]
cv2.rectangle(img, (x,y), (x_plus_w,y_plus_h), color, 2)
cv2.putText(img, label, (x-10,y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# run inference through the network
# and gather predictions from output layers
outs = net.forward(get_output_layers(net))
# initialization
class_ids = []
confidences = []
boxes = []
conf_threshold = 0.5
nms_threshold = 0.4
# for each detetion from each output layer
# get the confidence, class id, bounding box params
# and ignore weak detections (confidence < 0.5)
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0] * Width)
center_y = int(detection[1] * Height)
w = int(detection[2] * Width)
h = int(detection[3] * Height)
x = center_x - w / 2
y = center_y - h / 2
class_ids.append(class_id)
confidences.append(float(confidence))
boxes.append([x, y, w, h])
# apply non-max suppression
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold)
# go through the detections remaining
# after nms and draw bounding box
for i in indices:
i = i[0]
box = boxes[i]
x = box[0]
y = box[1]
w = box[2]
h = box[3]
draw_bounding_box(image, class_ids[i], confidences[i], round(x), round(y), round(x+w), round(y+h))
# display output image
cv2.imshow("object detection", image)
# wait until any key is pressed
cv2.waitKey()
# save output image to disk
cv2.imwrite("object-detection.jpg", image)
# release resources
cv2.destroyAllWindows()