forked from nyu-mll/PRPN-Analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathParsingNetwork.py
executable file
·66 lines (54 loc) · 2.76 KB
/
ParsingNetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import numpy
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class ParsingNetwork(nn.Module):
def __init__(self, ninp, nhid, nslots=5, nlookback=1, resolution=0.1, dropout=0.4, hard=False):
super(ParsingNetwork, self).__init__()
self.nhid = nhid
self.ninp = ninp
self.nslots = nslots
self.nlookback = nlookback
self.resolution = resolution
self.hard = hard
self.drop = nn.Dropout(dropout)
# Attention layers
self.gate = nn.Sequential(nn.Dropout(dropout),
nn.Conv1d(ninp, nhid, (nlookback + 1)),
nn.BatchNorm1d(nhid),
nn.ReLU(),
nn.Dropout(dropout),
nn.Conv1d(nhid, 2, 1, groups=2),
nn.Sigmoid())
def forward(self, emb, parser_state):
emb_last, cum_gate = parser_state
ntimestep = emb.size(0)
emb_last = torch.cat([emb_last, emb], dim=0)
emb = emb_last.transpose(0, 1).transpose(1, 2) # bsz, ninp, ntimestep + nlookback
gates = self.gate(emb) # bsz, 2, ntimestep
gate = gates[:, 0, :]
gate_next = gates[:, 1, :]
cum_gate = torch.cat([cum_gate, gate], dim=1)
gate_hat = torch.stack([cum_gate[:, i:i + ntimestep] for i in range(self.nslots, 0, -1)],
dim=2) # bsz, ntimestep, nslots
if self.hard:
memory_gate = (F.hardtanh((gate[:, :, None] - gate_hat) / self.resolution * 2 + 1) + 1) / 2
else:
memory_gate = F.sigmoid(
(gate[:, :, None] - gate_hat) / self.resolution * 10 + 5) # bsz, ntimestep, nslots
memory_gate = torch.cumprod(memory_gate, dim=2) # bsz, ntimestep, nlookback+1
memory_gate = torch.unbind(memory_gate, dim=1)
if self.hard:
memory_gate_next = (F.hardtanh((gate_next[:, :, None] - gate_hat) / self.resolution * 2 + 1) + 1) / 2
else:
memory_gate_next = F.sigmoid(
(gate_next[:, :, None] - gate_hat) / self.resolution * 10 + 5) # bsz, ntimestep, nslots
memory_gate_next = torch.cumprod(memory_gate_next, dim=2) # bsz, ntimestep, nlookback+1
memory_gate_next = torch.unbind(memory_gate_next, dim=1)
return (memory_gate, memory_gate_next), gate, (emb_last[-self.nlookback:], cum_gate[:, -self.nslots:])
def init_hidden(self, bsz):
weight = next(self.parameters()).data
self.ones = Variable(weight.new(bsz, 1).zero_() + 1)
return Variable(weight.new(self.nlookback, bsz, self.ninp).zero_()), \
Variable(weight.new(bsz, self.nslots).zero_() + numpy.inf)