forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSparseTensorUtils.h
132 lines (120 loc) · 5.31 KB
/
SparseTensorUtils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#pragma once
#include <ATen/ATen.h>
#include <ATen/SparseTensorImpl.h>
namespace at { namespace sparse {
// Just for documentary purposes
using SparseTensor = Tensor;
using LongTensor = Tensor;
using IntTensor = Tensor;
using SparseType = Type;
// This is an internal utility function for getting at the SparseTensorImpl,
// so that we can write sparse tensor specific accessors for special fields
// in SparseTensor. You should only use this for writing low level
// setters/getters for SparseTensorImpl fields; otherwise, you should use
// the low level setters/getters that were implemented using this.
//
// This may be called repeatedly, so make sure it's pretty cheap.
inline SparseTensorImpl* get_sparse_impl(const SparseTensor& self) {
AT_ASSERTM(!self.is_variable(), "_internal_get_SparseTensorImpl: should not be a variable"); // TODO: remove this when Variable and Tensor are merged
AT_ASSERTM(self.is_sparse(), "_internal_get_SparseTensorImpl: not a sparse tensor");
return static_cast<SparseTensorImpl*>(self.unsafeGetTensorImpl());
}
// Takes indices and values and directly puts them into the sparse tensor, no
// copy. This used to be called THSTensor_(_move)
inline void alias_into_sparse(const SparseTensor& self, const LongTensor& indices, const Tensor& values) {
get_sparse_impl(self)->set_indices_and_values_unsafe(indices, values);
}
// Take indices and values and makes a (data) copy of them to put into the sparse
// indices/values. This used to be called THSTensor_(_set)
inline void copy_into_sparse(const SparseTensor& self, const LongTensor& indices, const Tensor& values, bool non_blocking) {
alias_into_sparse(
self,
indices.to(self._indices().options(), non_blocking, /*copy=*/true),
values.to(self._values().options(), non_blocking, /*copy=*/true));
}
// TODO: put this into the public API
inline bool is_same_tensor(const Tensor& lhs, const Tensor& rhs) {
return lhs.unsafeGetTensorImpl() == rhs.unsafeGetTensorImpl();
}
inline bool is_same_density(const SparseTensor& self, const SparseTensor& src) {
return self.sparse_dim() == src.sparse_dim() && self.dense_dim() == src.dense_dim();
}
// Give us a new values tensor, with the same dimensionality
// as 'values' but with a new number of non-zero elements.
// TODO: Expose this for real in ATen, some day?
// NB: Doesn't preserve data.
inline Tensor new_values_with_size_of(const Tensor& values, int64_t nnz) {
std::vector<int64_t> size = values.sizes().vec();
size[0] = nnz;
return at::empty(size, values.options());
}
// NOTE [ Flatten Sparse Indices ]
// This helper function flattens a sparse indices tensor (a LongTensor) into a 1D
// indices tensor. E.g.,
// input = [[2, 4, 0],
// [3, 1, 10]]
// full_size = [2, 12]
// output = [ 2 * 12 + 3, 4 * 12 + 1, 0 * 12 + 10 ] = [27, 49, 10]
//
// In other words, assuming that each `indices[i, :]` is a valid index to a
// tensor `t` of shape `full_size`. This returns the corresponding indices to
// the flattened tensor `t.reshape( prod(full_size[:indices.size(0)]), -1 )`.
// if forceClone is true, the result will forced to be a clone of self.
// if force_clone is true, the result will forced to be a clone of self.
inline LongTensor flatten_indices(const Tensor& indices, IntArrayRef full_size, bool force_clone = false) {
int64_t sparse_dim = indices.size(0);
if (sparse_dim == 1) {
if (force_clone) {
return indices.squeeze(0).clone();
} else {
return indices.squeeze(0);
}
} else {
std::vector<int64_t> indices_mult_cpu_vec;
indices_mult_cpu_vec.reserve(sparse_dim);
int64_t mult = 1;
for (int64_t i = sparse_dim - 1; i >= 0; i--) {
indices_mult_cpu_vec[i] = mult;
mult *= full_size[i];
}
auto indices_mult_cpu = at::from_blob(
indices_mult_cpu_vec.data(),
/*size=*/{sparse_dim, 1},
indices.options().device(kCPU));
// NB: must be blocking because this blob may be freed after this closure,
// and non_blocking copy will see garbage.
auto indices_mult = indices_mult_cpu.to(indices.device(), /*non_blocking=*/false);
// Ideally we want matmul but matmul is slow on CPU Long and not implemented
// on CUDA Long. So mul is faster.
return indices.mul(indices_mult).sum(0);
}
}
// Flatten sparse tensor's indices from nD to 1D, similar to NOTE [ Flatten Sparse Indices ],
// except this one allows partial flatten: only flatten on specified dims. Note that
// the flatten indices might be uncoalesced if dims_to_flatten.size() < sparse_dim.
// Also if input indices is already coalesced, the flattened indices will also be sorted.
//
// args:
// indices: sparse tensor indices
// sizes: sparse tensor sizes
// dims_to_flatten: a list of dim index to flatten
//
// Ex1:
// indices = [[2, 4, 0],
// [3, 1, 3]]
// sizes = [2, 12]
// dims_to_flatten = [0, 1]
// new_indices = [ 2 * 12 + 3, 4 * 12 + 1, 0 * 12 + 3 ] = [27, 49, 3]
//
// Ex2:
// dims_to_flatten = [1]
// new_indices = [ 3, 1, 3 ] # uncoalesced
inline LongTensor flatten_indices_by_dims(const LongTensor& indices, const IntArrayRef& sizes, const IntArrayRef& dims_to_flatten){
LongTensor new_indices = at::zeros({indices.size(1)}, indices.options());
for (auto d : dims_to_flatten) {
new_indices.mul_(sizes[d]);
new_indices.add_(indices.select(0, d));
}
return new_indices;
}
}} // namespace at::sparse