forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen.py
431 lines (363 loc) · 16.6 KB
/
gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import argparse
import os
import yaml
from collections import OrderedDict
import sys
from os import path
sys.path.append(path.dirname(path.abspath(__file__)))
import cwrap_parser
import nn_parse
import native_parse
import preprocess_declarations
import function_wrapper
from code_template import CodeTemplate
from env import BUILD_NAMEDTENSOR
# This file is the top-level entry point for code generation in ATen.
# It takes an arbitrary number of arguments specifying metadata files to
# process (.cwrap, .yaml and .h) and outputs a number generated header
# and cpp files in ATen/ (see invocations of 'write' for each file that
# is written.) It is invoked from cmake; look for the 'cwrap_files'
# variable for an up-to-date list of files which are passed.
parser = argparse.ArgumentParser(description='Generate ATen source files')
parser.add_argument('files', help='cwrap files', nargs='+')
parser.add_argument(
'-s',
'--source-path',
help='path to source directory for ATen',
default='.')
parser.add_argument(
'-o',
'--output-dependencies',
help='output a list of dependencies into the given file and exit')
parser.add_argument(
'-d', '--install_dir', help='output directory', default='ATen')
parser.add_argument(
'--rocm',
action='store_true',
help='reinterpret CUDA as ROCm/HIP and adjust filepaths accordingly')
options = parser.parse_args()
# NB: It is mandatory to NOT use os.path.join here, as the install directory
# will eventually be ingested by cmake, which does not respect Windows style
# path slashes. If you switch this to use os.path.join, you'll get an error
# like:
#
# Syntax error in cmake code when parsing string
#
# C:/Jenkins/workspace/pytorch-builds/pytorch-win-ws2016-cuda9-cudnn7-py3-build/build/aten/src/ATen\core/TensorMethods.h
#
# Invalid character escape '\c'.
core_install_dir = options.install_dir + '/core' if options.install_dir is not None else None
if options.install_dir is not None and not os.path.exists(options.install_dir):
os.makedirs(options.install_dir)
if core_install_dir is not None and not os.path.exists(core_install_dir):
os.makedirs(core_install_dir)
class FileManager(object):
def __init__(self, install_dir=None):
self.install_dir = install_dir if install_dir else options.install_dir
self.filenames = set()
self.outputs_written = False
self.undeclared_files = []
def will_write(self, filename):
filename = '{}/{}'.format(self.install_dir, filename)
if self.outputs_written:
raise Exception("'will_write' can only be called before " +
"the call to write_outputs, refactor so outputs are registered " +
"before running the generators")
self.filenames.add(filename)
def _write_if_changed(self, filename, contents):
try:
with open(filename, 'r') as f:
old_contents = f.read()
except IOError:
old_contents = None
if contents != old_contents:
with open(filename, 'w') as f:
f.write(contents)
def write_outputs(self, filename):
"""Write a file containing the list of all outputs which are
generated by this script."""
self._write_if_changed(
filename,
''.join(name + ";" for name in sorted(self.filenames)))
self.outputs_written = True
def write(self, filename, s, env=None):
filename = '{}/{}'.format(self.install_dir, filename)
if isinstance(s, CodeTemplate):
assert env is not None
env['generated_comment'] = "@" + "generated by aten/src/ATen/gen.py"
s = s.substitute(env)
self._write_if_changed(filename, s)
if filename not in self.filenames:
self.undeclared_files.append(filename)
else:
self.filenames.remove(filename)
def check_all_files_written(self):
if len(self.undeclared_files) > 0:
raise Exception(
"trying to write files {} which are not ".format(self.undeclared_files) +
"in the list of outputs this script produces. " +
"use will_write to add them.")
if len(self.filenames) > 0:
raise Exception("Outputs declared with 'will_write' were " +
"never written: {}".format(self.filenames))
TEMPLATE_PATH = options.source_path + "/templates"
TYPE_DERIVED_CPP = CodeTemplate.from_file(TEMPLATE_PATH + "/TypeDerived.cpp")
SPARSE_TYPE_DERIVED_CPP = CodeTemplate.from_file(TEMPLATE_PATH + "/SparseTypeDerived.cpp")
TYPE_DERIVED_H = CodeTemplate.from_file(TEMPLATE_PATH + "/TypeDerived.h")
TYPE_DEFAULT_H = CodeTemplate.from_file(TEMPLATE_PATH + "/TypeDefault.h")
TYPE_DEFAULT_CPP = CodeTemplate.from_file(TEMPLATE_PATH + "/TypeDefault.cpp")
REGISTRATION_DECLARATIONS_H = CodeTemplate.from_file(TEMPLATE_PATH + "/RegistrationDeclarations.h")
OPS_ALREADY_MOVED_TO_C10_CPP = CodeTemplate.from_file(TEMPLATE_PATH + "/OpsAlreadyMovedToC10.cpp")
TENSOR_H = CodeTemplate.from_file(TEMPLATE_PATH + "/TensorBody.h")
TENSOR_METHODS_H = CodeTemplate.from_file(TEMPLATE_PATH + "/TensorMethods.h")
FUNCTIONS_H = CodeTemplate.from_file(TEMPLATE_PATH + "/Functions.h")
LEGACY_TH_FUNCTIONS_H = CodeTemplate.from_file(TEMPLATE_PATH + "/LegacyTHFunctions.h")
LEGACY_TH_FUNCTIONS_CPP = CodeTemplate.from_file(TEMPLATE_PATH + "/LegacyTHFunctions.cpp")
NATIVE_FUNCTIONS_H = CodeTemplate.from_file(TEMPLATE_PATH + "/NativeFunctions.h")
core_file_manager = FileManager(core_install_dir)
file_manager = FileManager()
cuda_file_manager = FileManager()
def backend_to_devicetype(backend):
if backend == 'QuantizedCPU':
return 'CPU'
return backend
backends = ['CPU', 'CUDA']
densities = ['Dense', 'Sparse', 'Mkldnn'] # TODO: layout instead of densities?
quantized_backends = ['QuantizedCPU']
# scalar_name, c_type, accreal, is_floating_type
quantized_scalar_types = [
('QInt8', 'qint8', 'QInt8AccrealNotDefined', 'QInt8IsFloatingTypeNotDefined'),
('QUInt8', 'quint8', 'QUInt8AccrealNotDefined', 'QUInt8IsFloatingTypeNotDefined'),
('QInt32', 'qint32', 'QInt32AccrealNotDefined', 'Qint32IsFloatingTypeNotDefined'),
]
# shared environment for non-derived base classes TensorBody.h Storage.h
top_env = {
'cpu_type_headers': [],
'cuda_type_headers': [],
'function_registrations': [],
'list_of_aten_ops': [],
'type_method_declarations': [],
'type_method_definitions': [],
'tensor_method_declarations': [],
'tensor_method_definitions': [],
'function_declarations': [],
'function_definitions': [],
'type_ids': [],
'native_function_declarations': [],
'registration_declarations': [],
}
def dict_representer(dumper, data):
return dumper.represent_dict(data.items())
def postprocess_output_declarations(output_declarations):
# ensure each return has a name associated with it
for decl in output_declarations:
has_named_ret = False
for n, ret in enumerate(decl.returns):
if 'name' not in ret:
assert not has_named_ret
if decl.inplace:
ret['name'] = 'self'
elif len(decl.returns) == 1:
ret['name'] = 'out'
else:
ret['name'] = 'out' + str(n)
else:
has_named_ret = True
def remove_key_if_none(dictionary, key):
if key in dictionary.keys() and dictionary[key] is None:
del dictionary[key]
return dictionary
return [remove_key_if_none(decl._asdict(), 'buffers')
for decl in output_declarations]
def format_yaml(data):
if options.output_dependencies:
# yaml formatting is slow so don't do it if we will ditch it.
return ""
noalias_dumper = yaml.dumper.SafeDumper
noalias_dumper.ignore_aliases = lambda self, data: True
# Support serializing OrderedDict
noalias_dumper.add_representer(OrderedDict, dict_representer)
# Some yaml parsers (e.g. Haskell's) don't understand line breaks.
# width=float('Inf') turns off optional line breaks and improves
# the portability of the outputted yaml.
return yaml.dump(data, default_flow_style=False, Dumper=noalias_dumper, width=float('Inf'))
def generate_storage_type_and_tensor(backend, density, declarations):
env = {}
density_tag = density if density != 'Dense' else ''
env['Density'] = density
env['Type'] = "{}{}Type".format(density_tag, backend)
env['DeviceType'] = backend_to_devicetype(backend)
env['Backend'] = density_tag + backend
env['storage_tensor_headers'] = []
if density != 'Sparse':
env['storage_tensor_headers'] = ['#include <c10/core/TensorImpl.h>']
# used for generating switch logic for external functions
tag = density_tag + backend
env['TypeID'] = 'TypeID::' + tag
top_env['type_ids'].append(tag + ',')
env['legacy_th_headers'] = []
if backend == 'CUDA':
env['extra_cuda_headers'] = []
env['extra_cuda_headers'].append('#include <ATen/DeviceGuard.h>')
if options.rocm:
env['th_headers'] = [
'#include <THH/THH.h>',
'#include <THH/THHTensor.hpp>',
'#include <THHUNN/THHUNN.h>',
'#undef THNN_',
'#undef THCIndexTensor_',
]
env['extra_cuda_headers'].append('#include <ATen/hip/ATenHIPGeneral.h>')
env['extra_cuda_headers'].append('#include <ATen/hip/HIPDevice.h>')
env['extra_cuda_headers'].append('#include <ATen/hip/HIPContext.h>')
else:
env['th_headers'] = [
'#include <THC/THC.h>',
'#include <THC/THCTensor.hpp>',
'#include <THCUNN/THCUNN.h>',
'#undef THNN_',
'#undef THCIndexTensor_',
]
env['extra_cuda_headers'].append('#include <ATen/cuda/ATenCUDAGeneral.h>')
env['extra_cuda_headers'].append('#include <ATen/cuda/CUDADevice.h>')
env['extra_cuda_headers'].append('#include <ATen/cuda/CUDAContext.h>')
env['state'] = ['globalContext().getTHCState()']
env['isCUDA'] = 'true'
env['storage_device'] = 'return storage->device;'
env['Generator'] = 'CUDAGenerator'
env['allocator'] = 'at::cuda::getCUDADeviceAllocator()'
else:
env['th_headers'] = [
'#include <TH/TH.h>',
'#include <TH/THTensor.hpp>',
'#include <THNN/THNN.h>',
'#undef THNN_',
]
env['extra_cuda_headers'] = []
env['state'] = []
env['isCUDA'] = 'false'
env['storage_device'] = 'throw std::runtime_error("CPU storage has no device");'
env['Generator'] = 'CPUGenerator'
env['allocator'] = 'getCPUAllocator()'
declarations, definitions, registrations, th_declarations, th_definitions = function_wrapper.create_derived(
env, declarations)
env['type_derived_method_declarations'] = declarations
env['type_derived_method_definitions'] = definitions
env['function_registrations'] = registrations
env['legacy_th_declarations'] = th_declarations
env['legacy_th_definitions'] = th_definitions
fm = file_manager
if env['DeviceType'] == 'CUDA':
fm = cuda_file_manager
if env['Backend'] == 'CPU' or env['Backend'] == 'CUDA':
env['namespace'] = env['Backend'].lower()
env['legacy_th_headers'].append('#include <ATen/LegacyTHFunctions' + env['Backend'] + ".h>")
fm.write('LegacyTHFunctions' + env['Backend'] + ".h", LEGACY_TH_FUNCTIONS_H, env)
fm.write('LegacyTHFunctions' + env['Backend'] + ".cpp", LEGACY_TH_FUNCTIONS_CPP, env)
if density != 'Sparse':
fm.write(env['Type'] + ".cpp", TYPE_DERIVED_CPP, env)
else:
fm.write(env['Type'] + ".cpp", SPARSE_TYPE_DERIVED_CPP, env)
fm.write(env['Type'] + ".h", TYPE_DERIVED_H, env)
if env['DeviceType'] == 'CPU':
top_env['cpu_type_headers'].append(
'#include "ATen/{}.h"'.format(env['Type']))
else:
assert env['DeviceType'] == 'CUDA'
top_env['cuda_type_headers'].append(
'#include "ATen/{}.h"'.format(env['Type']))
# yields (backend, density) tuples
def iterate_types():
for backend in backends:
for density in densities:
if density == 'Mkldnn' and backend != 'CPU':
continue
else:
yield (backend, density)
for backend in quantized_backends:
yield (backend, 'Dense')
###################
# declare what files will be output _before_ we do any work
# so that the script runs quickly when we are just querying the
# outputs
def declare_outputs():
core_files = ['TensorBody.h', 'TensorMethods.h', 'OpsAlreadyMovedToC10.cpp']
for f in core_files:
core_file_manager.will_write(f)
files = ['Declarations.yaml', 'TypeDefault.cpp', 'TypeDefault.h',
'Functions.h', 'NativeFunctions.h', 'RegistrationDeclarations.h']
for f in files:
file_manager.will_write(f)
for backend, density in iterate_types():
full_backend = backend if density == "Dense" else density + backend
fm = file_manager
if backend == 'CUDA':
fm = cuda_file_manager
for kind in ["Type"]:
if kind != 'Type' and density == "Sparse":
# No Storage or Tensor for sparse
continue
fm.will_write("{}{}.h".format(full_backend, kind))
fm.will_write("{}{}.cpp".format(full_backend, kind))
if backend == 'CPU' or backend == 'CUDA':
fm.will_write("LegacyTHFunctions{}.h".format(backend))
fm.will_write("LegacyTHFunctions{}.cpp".format(backend))
def filter_by_extension(files, *extensions):
filtered_files = []
for file in files:
for extension in extensions:
if file.endswith(extension):
filtered_files.append(file)
return filtered_files
def is_namedtensor_only_decl(decl):
if 'Dimname' in decl['schema_string']:
return True
if decl['name'] == 'align_tensors' or decl['name'] == 'align_as':
return True
return False
def generate_outputs():
cwrap_files = filter_by_extension(options.files, '.cwrap')
nn_files = filter_by_extension(options.files, 'nn.yaml', '.h')
native_files = filter_by_extension(options.files, 'native_functions.yaml')
declarations = [d
for file in cwrap_files
for d in cwrap_parser.parse(file)]
declarations += nn_parse.run(nn_files)
declarations += native_parse.run(native_files)
declarations = preprocess_declarations.run(declarations)
# note: this will fill in top_env['type/tensor_method_declarations/definitions']
# and modify the declarations to include any information that will all_backends
# be used by function_wrapper.create_derived
output_declarations = function_wrapper.create_generic(top_env, declarations)
output_declarations = postprocess_output_declarations(output_declarations)
file_manager.write("Declarations.yaml", format_yaml(output_declarations))
# Filter out named-tensor only declarations.
# They are necessary in create_generic because that generates Type.h, TensorBody.h,
# and TensorMethods.h, all of which are checked in to the codebase and therefore
# need to be consistent whether or not BUILD_NAMEDTENSOR is on/off.
if not BUILD_NAMEDTENSOR:
declarations = [decl for decl in declarations
if not is_namedtensor_only_decl(decl)]
for backend, density in iterate_types():
generate_storage_type_and_tensor(backend, density, declarations)
core_files = {
'TensorBody.h': TENSOR_H,
'TensorMethods.h': TENSOR_METHODS_H,
'OpsAlreadyMovedToC10.cpp': OPS_ALREADY_MOVED_TO_C10_CPP,
}
for core_file, core_template_file in core_files.items():
core_file_manager.write(core_file, core_template_file, top_env)
file_manager.write('TypeDefault.h', TYPE_DEFAULT_H, top_env)
file_manager.write('TypeDefault.cpp', TYPE_DEFAULT_CPP, top_env)
file_manager.write('RegistrationDeclarations.h', REGISTRATION_DECLARATIONS_H, top_env)
file_manager.write('Functions.h', FUNCTIONS_H, top_env)
file_manager.write('NativeFunctions.h', NATIVE_FUNCTIONS_H, top_env)
file_manager.check_all_files_written()
cuda_file_manager.check_all_files_written()
declare_outputs()
if options.output_dependencies is not None:
file_manager.write_outputs(options.output_dependencies)
core_file_manager.write_outputs(options.output_dependencies + "-core")
cuda_file_manager.write_outputs(options.output_dependencies + "-cuda")
else:
generate_outputs()