forked from EBjerrum/DeepIEP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDeepIEP.py
94 lines (73 loc) · 3.01 KB
/
DeepIEP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import numpy as np
import h5py, ast
class DeepIEP(object):
def __init__(self, cyscam=False, modelname="Models/default", load = True):
from keras import backend as K
K.set_learning_phase(0)
self.K = K
from keras.models import load_model
self.k_load_model = load_model
self.cyscam = cyscam
self.modelname = modelname
if load:
self.load()
def load(self, modelname=None):
if type(modelname) == type(None):
modelname = self.modelname
self.model = self.k_load_model(modelname + ".h5")
f = h5py.File(modelname + ".h5","r")
c2i_str = f["char2idx"].value
self.char2idx = ast.literal_eval(c2i_str)
f.close()
self.max_length = self.model.layers[0].input_shape[1]-1
def predict(self, seq):
if type(seq) == str:
#print "string"
return self.predict_seq(seq)
else:
#print "list like"
return self.predict_list(seq)
def predict_seq(self, seq):
if self.cyscam:
seq = seq.replace("C","Z")
vec = np.array([self.vectorize_seq(seq)])
vec = np.flip(vec, axis=1)
return self.model.predict(vec)[0][0]
def predict_list(self, a):
v = []
for s in a:
if self.cyscam:
s = s.replace("C","Z")
v.append(self.vectorize_seq(s))
v = np.flip(v, axis=1)
return self.model.predict(v)
def vectorize_seq(self, seq):
vec = np.zeros((self.max_length+1, len(self.char2idx.keys())+1))
for i,char in enumerate(seq):
j = self.char2idx[char]
vec[i,j] = 1
vec[len(seq):, -1] = 1
return vec
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='DeepIEP: Prediction of isoelectric point (pI/IEP) using recurrent neural networks(RNNs)')
parser.add_argument('--sequence','-s', nargs='*', help='An uppercase amino acid sequence to predict (Z= cyscam modified C, X=unknown')
parser.add_argument('--file','-f', help='A CSV file with sequences to predict. Sequences must be in a column named "Sequences"')
parser.add_argument('--full_precision', action='store_true', help='If full precision should be used when writing a CSV file')
args = parser.parse_args()
if args.sequence or args.file:
deepiep = DeepIEP()
if args.sequence:
print
for s in args.sequence:
print s, "%0.1F"%deepiep.predict(s)
if args.file:
import pandas as pd
data = pd.read_csv(args.file)
data["DeepIEP"] = deepiep.predict_list(data["Sequences"])
if not args.full_precision:
data.to_csv(args.file, float_format='%.1f', index=False)
else:
data.to_csv(args.file, index=False)
else:
print "-h for usage"