forked from Nek5000/NekDoc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnavierstokes.tex
23 lines (18 loc) · 1.02 KB
/
navierstokes.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
We shall state the variational formulation of the Navier--Stokes equations. This can be further discretized using the same quadrature rule as for the energy equation
Let us introduce a new space for the pressure
$$
L^2_0(\Omega)=\lbrace f \in L^2(\Omega) |\quad \int_{\Omega} f \d \Omega\ =\ 0,\ \rbrace
$$
The Navier--Stokes equations governing the flow are
\begin{eqnarray}
\rho(\frac{\partial \vect u}{\partial t} +\vect u \cdot \nabla \vect u ) &=& -\nabla p+ \nabla \cdot \vect \tau+\vect f\\
\nabla \cdot \vect u &=& 0 \nonumber
\end{eqnarray}
where
\begin{equation}
\tau =\mu[\nabla \vect u+\nabla \vect u^T-\frac{2}{3}\nabla \cdot \vect u \vect I]
\end{equation}
The Navier--Stokes equations are of mixed hyperbolic-parabolic type. In fact we can regard the steady NS equations as being a non-linear advection-diffusion equation with a constraint given by the pressure meant to enforce the divergence free property of the velocity field.
\begin{comment}
\section{$\mathbb{P}_N-\mathbb{P}_{N-2}$ discretization}
\end{comment}