-
Notifications
You must be signed in to change notification settings - Fork 62
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
multiple lead time #713
Comments
I think you need to take another look at your model and the data:
I tidied your model a little, which made it easier for me to see what was going on. using SDDP
import Gurobi
DEM = [0, 0, 0, 0, 0, 0, 0, 0, 1]
model = SDDP.LinearPolicyGraph(
stages = 9,
sense = :Max,
upper_bound = 10,
optimizer = Gurobi.Optimizer,
) do sp, t
@variable(sp, 0 <= pipeline1[1:8] <= 1, SDDP.State, Int, initial_value = 0)
@variable(sp, 0 <= pipeline2[1:8] <= 1, SDDP.State, Int, initial_value = 0)
@variable(sp, 0 <= buy <= 1, Int)
@variable(sp, 0 <= x_inventory, SDDP.State, initial_value = 0)
@variable(sp, u_sell >= 0)
@variable(sp, u_sell2 >= 0)
@variables(sp, begin
Plus >= 0
Neg >= 0
Plus1 >= 0
Neg1 >= 0
Plus2 >= 0
Neg2 >= 0
end)
if t==1
@constraint(sp, sum(pipeline1[i].out for i in 1:8) == buy)
for i in 1:8
fix(pipeline2[i].out, 0; force = true)
end
@constraint(sp, x_inventory.out == x_inventory.in)
@stageobjective(sp, 10_000 * buy)
else
fix(pipeline2[1].out, 0; force=true)
@constraints(sp, begin
[i in 2:8], pipeline1[i].out == pipeline1[i-1].in
[i in 2:8], pipeline2[i].out == pipeline2[i-1].in
pipeline2[2].out == pipeline1[8].in + Plus - Neg
x_inventory.out == x_inventory.in - u_sell2 + pipeline2[8].in + Plus1 - Neg1
DEM[t] == u_sell2 - Neg2 + Plus2
end)
@stageobjective(
sp,
60 * u_sell2 -
200 * x_inventory.out -
1001 * Plus -
10_000 * Neg -
90_000 * Plus1 -
1001 * Neg1 -
9001 * Plus2 -
1001 * Neg2,
)
end
end |
Thanks for your response, The problem is Maximizing. In the first stage, I force it to buy because it is always beneficial: Max using SDDP
import Gurobi
DEM = [0, 0, 0, 0, 0, 0, 0, 0, 1]
model = SDDP.LinearPolicyGraph(
stages = 9,
sense = :Max,
upper_bound = 10,
optimizer = Gurobi.Optimizer,
) do sp, t
@variable(sp, 0 <= pipeline1[1:8] <= 1, SDDP.State, Int, initial_value = 0)
@variable(sp, 0 <= pipeline2[1:8] <= 1, SDDP.State, Int, initial_value = 0)
@variable(sp, 0 <= buy <= 1, Int)
@variable(sp, 0 <= x_inventory, SDDP.State, initial_value = 0)
@variable(sp, u_sell >= 0)
@variable(sp, u_sell2 >= 0)
@variables(sp, begin
Plus >= 0
Neg >= 0
Plus1 >= 0
Neg1 >= 0
Plus2 >= 0
Neg2 >= 0
end)
if t==1
@constraint(sp, sum(pipeline1[i].out for i in 1:8) == buy)
for i in 1:8
fix(pipeline2[i].out, 0; force = true)
end
@constraint(sp, x_inventory.out == x_inventory.in)
@stageobjective(sp, 10_000 * buy)
else
fix(pipeline2[1].out, 0; force=true)
@constraints(sp, begin
[i in 2:8], pipeline1[i].out == pipeline1[i-1].in
[i in 2:8], pipeline2[i].out == pipeline2[i-1].in
pipeline2[4].out == pipeline1[8].in + Plus - Neg # <---Change(to make shore pipeline1 and pipeline2 cover each other)
x_inventory.out == x_inventory.in - u_sell2 + pipeline2[8].in + Plus1 - Neg1
DEM[t] == u_sell2 - Neg2 + Plus2
end)
@stageobjective(
sp,
60 * u_sell2 -
200 * x_inventory.out -
1001 * Plus -
10_000 * Neg -
90_000 * Plus1 -
1001 * Neg1 -
9001 * Plus2 -
1001 * Neg2,
)
end
end
SDDP.train(hazard_decision; iteration_limit = 20)
simulations = SDDP.simulate(
# The trained model to simulate.
hazard_decision,
# The number of replications.
10,
# A list of names to record the values of.
sampling_scheme = SDDP.InSampleMonteCarlo(
terminate_on_cycle = false,
terminate_on_dummy_leaf = true,
),
[:pipeline1,:buy,:x_inventory,:u_sell,:Plus,:Neg,:Plus1,:Neg1,:Plus2,:Neg2,:u_sell2,:pipeline2],
) |
Oh, I missed the fact it was The issue then is that your upper bound is not a valid upper bound |
Thanks, using SDDP
import Gurobi
DEM = [0, 0, 0, 0, 0, 0, 0, 0, 1]
model = SDDP.LinearPolicyGraph(
stages = 9,
sense = :Max,
upper_bound = 90000,
optimizer = Gurobi.Optimizer,
) do sp, t
@variable(sp, 0 <= pipeline1[1:8] <= 1, SDDP.State, Int, initial_value = 0)
@variable(sp, 0 <= pipeline2[1:8] <= 1, SDDP.State, Int, initial_value = 0)
@variable(sp, 0 <= buy <= 1, Int)
@variable(sp, 0 <= x_inventory, SDDP.State, initial_value = 0)
@variable(sp, u_sell >= 0)
@variable(sp, u_sell2 >= 0)
@variables(sp, begin
Plus >= 0
Neg >= 0
Plus1 >= 0
Neg1 >= 0
Plus2 >= 0
Neg2 >= 0
end)
if t==1
@constraint(sp, sum(pipeline1[i].out for i in 1:8) == buy)
for i in 1:8
fix(pipeline2[i].out, 0; force = true)
end
@constraint(sp, x_inventory.out == x_inventory.in)
@stageobjective(sp, 10000 * buy)
else
fix(pipeline2[1].out, 0; force=true)
@constraints(sp, begin
[i in 2:8], pipeline1[i].out == pipeline1[i-1].in
[i in 2:8], pipeline2[i].out == pipeline2[i-1].in
pipeline2[4].out == pipeline1[8].in + Plus - Neg
x_inventory.out == x_inventory.in - u_sell2 + pipeline2[8].in + Plus1 - Neg1
DEM[t] == u_sell2 - Neg2 + Plus2
end)
@stageobjective(
sp,
60 * u_sell2 -
200 * x_inventory.out -
1000 * Plus -
1000 * Neg -
1000 * Plus1 -
1000 * Neg1 -
1000 * Plus2 -
1000 * Neg2,
)
end
end
SDDP.train(model; iteration_limit = 120)
simulations = SDDP.simulate(
# The trained model to simulate.
model,
# The number of replications.
10,
# A list of names to record the values of.
sampling_scheme = SDDP.InSampleMonteCarlo(
terminate_on_cycle = false,
terminate_on_dummy_leaf = true,
),
[:pipeline1,:buy,:x_inventory,:u_sell,:Plus,:Neg,:Plus1,:Neg1,:Plus2,:Neg2,:u_sell2,:pipeline2],
) your help is appreciated. |
I think you need to take another look at your constraints. You have: [i in 2:8], pipeline2[i].out == pipeline2[i-1].in
pipeline2[4].out == pipeline1[8].in + Plus - Neg This says that For each pipeline step, you need to ensure that there is a flow balance: flow into the stage = flow out of the stage. |
Hi Oscar, using SDDP
import Gurobi
T=9
Statr=
DEM = [0, 0, 0, 0, 0, 0, 0, 0, 1]
model = SDDP.LinearPolicyGraph(
stages = T,
sense = :Max,
# It should be upper than your objectives
upper_bound = 90000,
optimizer = Gurobi.Optimizer,
) do sp, t
@variable(sp, 0 <= pipeline1[1:T-1] <= 1, SDDP.State, Int, initial_value = 0)
@variable(sp, 0 <= pipeline2[1:T-1] <= 1, SDDP.State, Int, initial_value = 0)
@variable(sp, 0 <= buy <= 1, Int)
@variable(sp, 0 <= x_inventory, SDDP.State, initial_value = 0)
@variable(sp, u_sell2 >= 0)
@variables(sp, begin
Plus >= 0
Neg >= 0
Plus1 >= 0
Neg1 >= 0
Plus2 >= 0
Neg2 >= 0
end)
if t==1
@constraint(sp, sum(pipeline1[i].out for i in 1:T-1) == buy)
for i in 1:T-1
fix(pipeline2[i].out, 0; force = true)
end
@constraint(sp, x_inventory.out == x_inventory.in)
@stageobjective(sp, 10000 * buy)
else
fix(pipeline2[1].out, 0; force=true)
@constraints(sp, begin
[i in 2:T-1], pipeline1[i].out == pipeline1[i-1].in
#This is very important here that 5 in [i in 5:8], then in the next line put pipeline2[4].out ==
[i in 5:T-1], pipeline2[i].out == pipeline2[i-1].in
pipeline2[4].out == pipeline1[T-1].in + Plus - Neg
x_inventory.out == x_inventory.in - u_sell2 + pipeline2[T-1].in + Plus1 - Neg1
DEM[t] == u_sell2 - Neg2 + Plus2
end)
@stageobjective(
sp,
60 * u_sell2 -
200 * x_inventory.out -
1000 * Plus -
1000 * Neg -
1000 * Plus1 -
1000 * Neg1 -
1000 * Plus2 -
1000 * Neg2,
)
end
end
SDDP.train(model; iteration_limit = 10)
simulations = SDDP.simulate(
# The trained model to simulate.
model,
# The number of replications.
10,
# A list of names to record the values of.
sampling_scheme = SDDP.InSampleMonteCarlo(
terminate_on_cycle = false,
terminate_on_dummy_leaf = true,
),
[:pipeline1,:buy,:x_inventory,:u_sell,:Plus,:Neg,:Plus1,:Neg1,:Plus2,:Neg2,:u_sell2,:pipeline2],
)
a=1 |
So it works now? |
I honestly appreciate your always help Thankssssss |
Actually, I want to make uncertainty for the second stage leading time. this is a supply network to assemble a given tailored finished product under lead time uncertainty. I couldn't use these links for accessing to previous steps Link1 and Link2 This is the code: using SDDP
import Gurobi
T=9
DEM = [0, 0, 0, 0, 0, 0, 0, 0, 1]
model = SDDP.LinearPolicyGraph(
stages = T,
sense = :Max,
# It should be upper than your objectives
upper_bound = 90000,
optimizer = Gurobi.Optimizer,
) do sp, t
@variable(sp, 0 <= pipeline1[1:T-1] <= 1, SDDP.State, Int, initial_value = 0)
@variable(sp, 0 <= pipeline2[1:T-1] <= 1, SDDP.State, Int, initial_value = 0)
@variable(sp, 0 <= buy <= 1, Int)
@variable(sp, 0 <= x_inventory, SDDP.State, initial_value = 0)
@variable(sp, u_sell2 >= 0)
@variables(sp, begin
Plus >= 0
Neg >= 0
Plus1 >= 0
Neg1 >= 0
Plus2 >= 0
Neg2 >= 0
end)
if t==1
@constraint(sp, sum(pipeline1[i].out for i in 1:T-1) == buy)
for i in 1:T-1
fix(pipeline2[i].out, 0; force = true)
end
@constraint(sp, x_inventory.out == x_inventory.in)
@stageobjective(sp, 10000 * buy)
else
fix(pipeline2[1].out, 0; force=true)
Ω = [2,3,4,5,6,7,8]
P = [1/7,1/7,1/7,1/7,1/7,1/7,1/7]
# delay in shipping
@variable(sp, Start)
# delay for this order (shipping+production)
SDDP.parameterize(sp, Ω, P) do ω
return JuMP.fix( @variable(sp, Start)
, ω)
end
@constraints(sp, begin
[i in 2:T-1], pipeline1[i].out == pipeline1[i-1].in
#This is very important here that 5 in [i in 5:8], then in the next line put pipeline2[4].out ==
[i in Start-1:T-1], pipeline2[i].out == pipeline2[i-1].in
pipeline2[Start].out == pipeline1[T-1].in + Plus - Neg
x_inventory.out == x_inventory.in - u_sell2 + pipeline2[T-1].in + Plus1 - Neg1
DEM[t] == u_sell2 - Neg2 + Plus2
end)
@stageobjective(
sp,
60 * u_sell2 -
200 * x_inventory.out -
1000 * Plus -
1000 * Neg -
1000 * Plus1 -
1000 * Neg1 -
1000 * Plus2 -
1000 * Neg2,
)
end
end
SDDP.train(model; iteration_limit = 10)
simulations = SDDP.simulate(
# The trained model to simulate.
model,
# The number of replications.
10,
# A list of names to record the values of.
sampling_scheme = SDDP.InSampleMonteCarlo(
terminate_on_cycle = false,
terminate_on_dummy_leaf = true,
),
[:pipeline1,:buy,:x_inventory,:u_sell,:Plus,:Neg,:Plus1,:Neg1,:Plus2,:Neg2,:u_sell2,:pipeline2],
) Solving this issue helps me a lot. |
You can never use the value of a JuMP variable to index variables or constraints (in SDDP, or in regular JuMP models). Instead, you could do something like this (I didn't test, so might be typos, etc): @constraint(
sp,
c_balance[i in 2:T-1],
pipeline2[i].out - pipeline1[T-1].in - pipeline2[i-1].in - Plus + Neg == 0
)
Ω = [2, 3, 4, 5, 6, 7, 8]
SDDP.parameterize(sp, Ω) do ω
for i in 2:8
if ω == i
# pipeline2[i].out - pipeline1[T-1].in - Plus + Neg == 0
# ==> pipeline2[i].out == pipeline1[T-1].in + Plus - Neg
set_normalized_coefficient(c_balance[i], pipeline1[T-1].in, -1)
set_normalized_coefficient(c_balance[i], pipeline2[i-1].in, 0)
set_normalized_coefficient(c_balance[i], Plus, -1)
set_normalized_coefficient(c_balance[i], Neg, 1)
else
# pipeline2[i].out - pipeline2[i-1].in == 0
# ==> pipeline2[i].out == pipeline2[i-1].in
set_normalized_coefficient(c_balance[i], pipeline1[T-1].in, 0)
set_normalized_coefficient(c_balance[i], pipeline2[i-1].in, -1)
set_normalized_coefficient(c_balance[i], Plus, 0)
set_normalized_coefficient(c_balance[i], Neg, 0)
end
end
end |
Thanks for the code, I rewrote the code based on that. I couldn't get the result. using SDDP
import Gurobi
T=9
DEM = [0, 0, 0, 0, 0, 0, 0, 0, 1]
model = SDDP.LinearPolicyGraph(
stages = T,
sense = :Max,
# It should be upper than your objectives
upper_bound = 200,
optimizer = Gurobi.Optimizer,
) do sp, t
@variable(sp, 0 <= pipeline1[1:T-1] <= 1, SDDP.State, Int, initial_value = 0)
@variable(sp, 0 <= pipeline2[1:T-1] <= 1, SDDP.State, Int, initial_value = 0)
@variable(sp, 0 <= buy <= 1, Int)
@variable(sp, 0 <= x_inventory, SDDP.State, initial_value = 0)
@variable(sp, u_sell2 >= 0)
@variables(sp, begin
Plus >= 0
Neg >= 0
Plus1 >= 0
Neg1 >= 0
Plus2 >= 0
Neg2 >= 0
end)
if t==1
@constraint(sp, sum(pipeline1[i].out for i in 1:T-1) == buy)
for i in 1:T-1
fix(pipeline2[i].out, 0; force = true)
end
@constraint(sp, x_inventory.out == x_inventory.in)
@stageobjective(sp, 100 * buy)
else
fix(pipeline2[1].out, 0; force=true)
@constraint(
sp,
c_balance[i in 2:T-1],
pipeline2[i].out - pipeline1[T-1].in - pipeline2[i-1].in - Plus + Neg == 0
)
Ω = [2, 3, 4, 5, 6, 7,8]
SDDP.parameterize(sp, Ω) do ω
for i in 2:8
if ω == i
# pipeline2[i].out - pipeline1[T-1].in - Plus + Neg == 0
# ==> pipeline2[i].out == pipeline1[T-1].in + Plus - Neg
set_normalized_coefficient(c_balance[i], pipeline1[T-1].in, -1)
set_normalized_coefficient(c_balance[i], pipeline2[i-1].in, 0)
set_normalized_coefficient(c_balance[i], Plus, -1)
set_normalized_coefficient(c_balance[i], Neg, 1)
else
# pipeline2[i].out - pipeline2[i-1].in == 0
# ==> pipeline2[i].out == pipeline2[i-1].in
set_normalized_coefficient(c_balance[i], pipeline1[T-1].in, 0)
set_normalized_coefficient(c_balance[i], pipeline2[i-1].in, -1)
set_normalized_coefficient(c_balance[i], Plus, 0)
set_normalized_coefficient(c_balance[i], Neg, 0)
end
end
end
@constraints(sp, begin
[i in 2:T-1], pipeline1[i].out == pipeline1[i-1].in
#This is very important here that 5 in [i in 5:8], then in the next line put pipeline2[4].out ==
# [i in Start-1:T-1], pipeline2[i].out == pipeline2[i-1].in
# pipeline2[Start].out == pipeline1[T-1].in + Plus - Neg
x_inventory.out == x_inventory.in - u_sell2 + pipeline2[T-1].in + Plus1 - Neg1
DEM[t] == u_sell2 - Neg2 + Plus2
end)
@stageobjective(
sp,
60 * u_sell2 -
200 * x_inventory.out -
500 * Plus -
500 * Neg -
500 * Plus1 -
500 * Neg1 -
500 * Plus2 -
500 * Neg2,
)
end
end
SDDP.train(model; iteration_limit = 50)
simulations = SDDP.simulate(
# The trained model to simulate.
model,
# The number of replications.
10,
# A list of names to record the values of.
sampling_scheme = SDDP.InSampleMonteCarlo(
terminate_on_cycle = false,
terminate_on_dummy_leaf = true,
),
[:pipeline1,:buy,:x_inventory,:Plus,:Neg,:Plus1,:Neg1,:Plus2,:Neg2,:u_sell2,:pipeline2],
) |
I also tried to use another trick to force the problem to make this constraint appear once. I made a nested if in the using SDDP
import Gurobi
T=9
DEM = [0, 0, 0, 0, 0, 0, 0, 0, 1]
model = SDDP.LinearPolicyGraph(
stages = T,
sense = :Max,
# It should be upper than your objectives
upper_bound = 200,
optimizer = Gurobi.Optimizer,
) do sp, t
@variable(sp, 0 <= pipeline1[1:T-1] <= 1, SDDP.State, Int, initial_value = 0)
@variable(sp, 0 <= pipeline2[1:T-1] <= 1, SDDP.State, Int, initial_value = 0)
@variable(sp, 0 <= buy <= 1, Int)
@variable(sp, 0 <= x_inventory, SDDP.State, initial_value = 0)
@variable(sp, u_sell2 >= 0)
@variable(sp, 0 <=k <= 1, SDDP.State, Int, initial_value = 0)
@variables(sp, begin
Plus >= 0
Neg >= 0
Plus1 >= 0
Neg1 >= 0
Plus2 >= 0
Neg2 >= 0
OneVar>=0
end)
if t==1
@constraint(sp, sum(pipeline1[i].out for i in 1:T-1) == buy)
for i in 1:T-1
fix(pipeline2[i].out, 0; force = true)
end
@constraint(sp, x_inventory.out == x_inventory.in)
@constraint(sp, k.out == k.in)
@stageobjective(sp, 100 * buy)
else
fix(pipeline2[1].out, 0; force=true)
fix(OneVar, 1; force=true)
@constraint(sp, Transfer,1*k.out -1*k.in==0 )
@constraint(sp, DemandCheck, 0*k.out -0*OneVar== 0)
@constraint(
sp,
c_balance[i in 2:T-1],
1*pipeline2[i].out - 1*pipeline1[T-1].in - 1*pipeline2[i-1].in -1* Plus +1* Neg == 0
)
Ω = [2, 3, 4, 5, 6, 7,8]
# Ω = [ 3,4]
SDDP.parameterize(sp, Ω) do ω
for i in 2:8
if ω == i
if k.in==0
# pipeline2[i].out - pipeline1[T-1].in - Plus + Neg == 0
# ==> pipeline2[i].out == pipeline1[T-1].in + Plus - Neg
set_normalized_coefficient(Transfer, k.out, 0)
set_normalized_coefficient(Transfer, k.in, 0)
set_normalized_coefficient(DemandCheck, k.out, 1)
set_normalized_coefficient(DemandCheck, OneVar, -1)
set_normalized_coefficient(c_balance[i], pipeline1[T-1].in, -1)
set_normalized_coefficient(c_balance[i], pipeline2[i-1].in, 0)
set_normalized_coefficient(c_balance[i], Plus, -1)
set_normalized_coefficient(c_balance[i], Neg, 1)
else
set_normalized_coefficient(Transfer, k.out, 1)
set_normalized_coefficient(Transfer, k.in, -1)
set_normalized_coefficient(DemandCheck, k.out, 0)
set_normalized_coefficient(DemandCheck, OneVar, 0)
set_normalized_coefficient(c_balance[i], pipeline1[T-1].in, 0)
set_normalized_coefficient(c_balance[i], pipeline2[i-1].in, -1)
set_normalized_coefficient(c_balance[i], Plus, 0)
set_normalized_coefficient(c_balance[i], Neg, 0)
end
else
# pipeline2[i].out - pipeline2[i-1].in == 0
# ==> pipeline2[i].out == pipeline2[i-1].in
set_normalized_coefficient(Transfer, k.out, 1)
set_normalized_coefficient(Transfer, k.in, -1)
set_normalized_coefficient(DemandCheck, k.out, 0)
set_normalized_coefficient(DemandCheck, OneVar, 0)
set_normalized_coefficient(c_balance[i], pipeline1[T-1].in, 0)
set_normalized_coefficient(c_balance[i], pipeline2[i-1].in, -1)
set_normalized_coefficient(c_balance[i], Plus, 0)
set_normalized_coefficient(c_balance[i], Neg, 0)
end
end
end
@constraints(sp, begin
[i in 2:T-1], pipeline1[i].out == pipeline1[i-1].in
#This is very important here that 5 in [i in 5:8], then in the next line put pipeline2[4].out ==
# [i in Start-1:T-1], pipeline2[i].out == pipeline2[i-1].in
# pipeline2[Start].out == pipeline1[T-1].in + Plus - Neg
x_inventory.out == x_inventory.in - u_sell2 + pipeline2[T-1].in + Plus1 - Neg1
DEM[t] == u_sell2 - Neg2 + Plus2
end)
@stageobjective(
sp,
k.out+
60 * u_sell2 -
200 * x_inventory.out -
500 * Plus -
500 * Neg -
500 * Plus1 -
500 * Neg1 -
500 * Plus2 -
500 * Neg2,
)
end
end
SDDP.train(model; iteration_limit = 30)
simulations = SDDP.simulate(
# The trained model to simulate.
model,
# The number of replications.
10,
# A list of names to record the values of.
sampling_scheme = SDDP.InSampleMonteCarlo(
terminate_on_cycle = false,
terminate_on_dummy_leaf = true,
),
[:pipeline1,:buy,:x_inventory,:Plus,:Neg,:Plus1,:Neg1,:Plus2,:Neg2,:u_sell2,:pipeline2],
) Any idea how to fix this issue is very appreciated. |
You cannot add |
Thanks Oscar for always being responsive. |
Great. I'll close this issue because it seems like things are fixed, but please open a new issue if you have more questions. |
Hi Oscar,
I am trying to develop a model and in the first step, I want to have a model without uncertainty. Then I will improve it.
I have a demand DEM[t], In the first step, I should buy one unit of material and decide when I will start transferring that. therefore I made two pipelines, first from time t=1 to the beginning of the time that transfer begins, Second the pipeline for the time that material takes to go to the destination. the decision variable would be which one of the elements of pipeline1 gets the value of one. ( I want to add in the future uncertainty)
In stage 1 , I forced the prbolem to push buy to one of the elements of pipeline1[i]. then in the next steps I continuously transfer it to the next times untill
@constraint(sp,pipeline2[2].out== pipeline1[8].in+Plus-Neg)
which sends it to the start of pipeline2.the same transfer happens for pipeline2 until gets to t=9 which sends it to the required demand=1.
see the picture:
This is the model:
I cannot get the result that buys in the step one and sends it to the pipeline 1. It uses Neg and Plus pennalties.
I appreciate it if you can help me with that.
The text was updated successfully, but these errors were encountered: