-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpre_process.py
91 lines (71 loc) · 4.89 KB
/
pre_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#Command to start StanfordNLP server (see below)
#java -mx4g -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer -port 9000 -timeout 15000
from pycorenlp import StanfordCoreNLP
import subprocess
import os
nlp = StanfordCoreNLP('http://localhost:9000')
sample_abstract = "OBJECTIVES: To evaluate the association between PSA nadir level and time to nadir (TTN) with biochemical recurrence (BCR) risk after radical prostatectomy (RP) in the SEARCH database. METHODS: Retrospective analysis of 1,939 men from the SEARCH database treated with RP between 1998-2015 with available ultrasensitive PSA nadir within 1-6 months after RP. Uni- and multivariable analyses of PSA nadir and TTN with time from nadir to BCR were done with Cox models (adjusted for demographics, tumor features and preoperative PSA). RESULTS: Among men with an undetectable PSA nadir, the TTN was unrelated to BCR (1-2.9 vs. 3-6 months: HR 0.86, p=0.46). Regardless of TTN, men with detectable nadir had increased risk of BCR (TTN 3-6 months: HR 1.81, p=0.024; TTN 1-2.99 months: HR 3.75, p<0.001 vs. undetectable nadir and TTN 3-6 months). Among men with a detectable PSA at 1-3 months, 53% had a lower follow-up PSA 3-6 months after RP which was undetectable in 32% and lower but still detectable in 21%. CONCLUSIONS: In the post-RP setting, men with both a detectable nadir and a shorter TTN had an increased risk of BCR. Intriguingly, about half of the men with a detectable PSA in the first 3 months after RP had a lower follow-up PSA between 3 and 6 months after RP. If confirmed in future studies, this has important implications for patients considering adjuvant therapy based upon post-operative PSA values in the first 3 months after RP."
#pre-processing regimen: tokenization, sentence-splitting, pos-tagging, lemmatization,
raw_output = nlp.annotate(sample_abstract, properties={'annotators': 'tokenize,ssplit,pos,lemma,parse','outputFormat': 'json'})
import util
def runCmd(cmd):#try to do this directly with the OpenNLP or StanfordNLP server
print cmd
p = subprocess.Popen(cmd, stdin=None, stdout = None, shell=True)
os.popen(cmd)
p.wait()
def create_sen_list(abs_text):#first original function in a LONG LONG TIME, C'MON man you can DO THIS !!!
abs_sen_list = abs_text.split("\n")
return abs_sen_list
#this function has to be HEAVILY revised bc. we are using different tools
def processAbstract_txt(id, output): #assumes /txt/ directory exisits, and we are processing files from there.
posInputPath = outpath + "/txt/" + absid + ".txt"
#utility.writeToFile(posInput, posInputPath)
input = open(posInputPath, "r")
abs_text = input.read()
posOutTemp = outpath + "/posOutTemp/" +absid+".txt"
nlp = StanfordCoreNLP('http://localhost:9000')
posCmd = "~/bin/pos --model ~/BIO/CC/models/pos_bio/ --maxwords 1000 --input " + posInputPath + " --output " + posOutTemp
runCommand(posCmd)
#~/bin/parser --parser ~/BIO/CC/models/parser/ --super ~/BIO/CC/models/super_bio/ --input /home/sb895/BIO/data/cc/tagOut.txt --output /home/sb895/BIO/data/cc/parserOut.txt
parseCCOutPath = outpath + "/ccOut/" + absid + ".cc.txt"
parseCmd = "~/bin/parser --parser ~/BIO/CC/models/parser/ --super ~/BIO/CC/models/super_bio/ --parser-maxsupercats 900000 --parser-maxwords 1000 --input " + posOutTemp + " --output " + parseCCOutPath
runCommand(parseCmd)
[posOut,parseOut]=processCCParse(parseCCOutPath)
posOutPath = outpath + "/pos/" + absid + ".pos.txt"
parseOutPath = outpath + "/parse/" + absid + ".parse.txt"
utility.writeToFile(posOut,posOutPath)
utility.writeToFile(parseOut,parseOutPath)
doLemma(posOutPath,absid,outpath)
def start(dataPath,outpath, start_at_middle):
print"starting cc script!"
count = 0;
lines = open(dataPath).read().splitlines()
newAbsList = []
util.createDirIfNotExist(outpath + "/txt/")
util.createDirIfNotExist(outpath + "/pos/")
util.createDirIfNotExist(outpath + "/parse/")
util.createDirIfNotExist(outpath + "/lem/")
util.createDirIfNotExist(outpath + "/posOutTemp/")
print lines[0]
for line in lines:
if(not line.startswith("^")):
absid = line.strip()
else:
count += 1
if(isNewAbs(absid,outpath)):
sens = line.split("^")
sens = cleanInput(sens)
if(utility.isEmptyList(sens)):
print absid + " has empty abstract"
continue
newAbsList.append(abs)
print str(count) + ": " + absid
utility.incrmentDic(inputAlignmentDic,absid)
processAbstract(absid, sens,outpath)
if(start_at_middle):
print "working normal from the middle !!"
else:
print "normal processing !"
else:
print str(count) + " skipping: " + absid
#checkOutputAlignment(inputAlignmentDic)