-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
Copy pathpsa_head.py
197 lines (188 loc) · 7.35 KB
/
psa_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmseg.registry import MODELS
from ..utils import resize
from .decode_head import BaseDecodeHead
try:
from mmcv.ops import PSAMask
except ModuleNotFoundError:
PSAMask = None
@MODELS.register_module()
class PSAHead(BaseDecodeHead):
"""Point-wise Spatial Attention Network for Scene Parsing.
This head is the implementation of `PSANet
<https://hszhao.github.io/papers/eccv18_psanet.pdf>`_.
Args:
mask_size (tuple[int]): The PSA mask size. It usually equals input
size.
psa_type (str): The type of psa module. Options are 'collect',
'distribute', 'bi-direction'. Default: 'bi-direction'
compact (bool): Whether use compact map for 'collect' mode.
Default: True.
shrink_factor (int): The downsample factors of psa mask. Default: 2.
normalization_factor (float): The normalize factor of attention.
psa_softmax (bool): Whether use softmax for attention.
"""
def __init__(self,
mask_size,
psa_type='bi-direction',
compact=False,
shrink_factor=2,
normalization_factor=1.0,
psa_softmax=True,
**kwargs):
if PSAMask is None:
raise RuntimeError('Please install mmcv-full for PSAMask ops')
super().__init__(**kwargs)
assert psa_type in ['collect', 'distribute', 'bi-direction']
self.psa_type = psa_type
self.compact = compact
self.shrink_factor = shrink_factor
self.mask_size = mask_size
mask_h, mask_w = mask_size
self.psa_softmax = psa_softmax
if normalization_factor is None:
normalization_factor = mask_h * mask_w
self.normalization_factor = normalization_factor
self.reduce = ConvModule(
self.in_channels,
self.channels,
kernel_size=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
self.attention = nn.Sequential(
ConvModule(
self.channels,
self.channels,
kernel_size=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg),
nn.Conv2d(
self.channels, mask_h * mask_w, kernel_size=1, bias=False))
if psa_type == 'bi-direction':
self.reduce_p = ConvModule(
self.in_channels,
self.channels,
kernel_size=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
self.attention_p = nn.Sequential(
ConvModule(
self.channels,
self.channels,
kernel_size=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg),
nn.Conv2d(
self.channels, mask_h * mask_w, kernel_size=1, bias=False))
self.psamask_collect = PSAMask('collect', mask_size)
self.psamask_distribute = PSAMask('distribute', mask_size)
else:
self.psamask = PSAMask(psa_type, mask_size)
self.proj = ConvModule(
self.channels * (2 if psa_type == 'bi-direction' else 1),
self.in_channels,
kernel_size=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
self.bottleneck = ConvModule(
self.in_channels * 2,
self.channels,
kernel_size=3,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
def forward(self, inputs):
"""Forward function."""
x = self._transform_inputs(inputs)
identity = x
align_corners = self.align_corners
if self.psa_type in ['collect', 'distribute']:
out = self.reduce(x)
n, c, h, w = out.size()
if self.shrink_factor != 1:
if h % self.shrink_factor and w % self.shrink_factor:
h = (h - 1) // self.shrink_factor + 1
w = (w - 1) // self.shrink_factor + 1
align_corners = True
else:
h = h // self.shrink_factor
w = w // self.shrink_factor
align_corners = False
out = resize(
out,
size=(h, w),
mode='bilinear',
align_corners=align_corners)
y = self.attention(out)
if self.compact:
if self.psa_type == 'collect':
y = y.view(n, h * w,
h * w).transpose(1, 2).view(n, h * w, h, w)
else:
y = self.psamask(y)
if self.psa_softmax:
y = F.softmax(y, dim=1)
out = torch.bmm(
out.view(n, c, h * w), y.view(n, h * w, h * w)).view(
n, c, h, w) * (1.0 / self.normalization_factor)
else:
x_col = self.reduce(x)
x_dis = self.reduce_p(x)
n, c, h, w = x_col.size()
if self.shrink_factor != 1:
if h % self.shrink_factor and w % self.shrink_factor:
h = (h - 1) // self.shrink_factor + 1
w = (w - 1) // self.shrink_factor + 1
align_corners = True
else:
h = h // self.shrink_factor
w = w // self.shrink_factor
align_corners = False
x_col = resize(
x_col,
size=(h, w),
mode='bilinear',
align_corners=align_corners)
x_dis = resize(
x_dis,
size=(h, w),
mode='bilinear',
align_corners=align_corners)
y_col = self.attention(x_col)
y_dis = self.attention_p(x_dis)
if self.compact:
y_dis = y_dis.view(n, h * w,
h * w).transpose(1, 2).view(n, h * w, h, w)
else:
y_col = self.psamask_collect(y_col)
y_dis = self.psamask_distribute(y_dis)
if self.psa_softmax:
y_col = F.softmax(y_col, dim=1)
y_dis = F.softmax(y_dis, dim=1)
x_col = torch.bmm(
x_col.view(n, c, h * w), y_col.view(n, h * w, h * w)).view(
n, c, h, w) * (1.0 / self.normalization_factor)
x_dis = torch.bmm(
x_dis.view(n, c, h * w), y_dis.view(n, h * w, h * w)).view(
n, c, h, w) * (1.0 / self.normalization_factor)
out = torch.cat([x_col, x_dis], 1)
out = self.proj(out)
out = resize(
out,
size=identity.shape[2:],
mode='bilinear',
align_corners=align_corners)
out = self.bottleneck(torch.cat((identity, out), dim=1))
out = self.cls_seg(out)
return out