This repository has been archived by the owner on Jan 8, 2025. It is now read-only.
forked from openssl/openssl
-
Notifications
You must be signed in to change notification settings - Fork 127
/
Copy pathINSTALL
1289 lines (999 loc) · 56.5 KB
/
INSTALL
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
OPENSSL INSTALLATION
--------------------
This document describes installation on all supported operating
systems (the Unix/Linux family (which includes Mac OS/X), OpenVMS,
and Windows).
To install OpenSSL, you will need:
* A make implementation
* Perl 5 with core modules (please read NOTES.PERL)
* The perl module Text::Template (please read NOTES.PERL)
* an ANSI C compiler
* a development environment in the form of development libraries and C
header files
* a supported operating system
For additional platform specific requirements, solutions to specific
issues and other details, please read one of these:
* NOTES.UNIX (any supported Unix like system)
* NOTES.VMS (OpenVMS)
* NOTES.WIN (any supported Windows)
* NOTES.DJGPP (DOS platform with DJGPP)
* NOTES.ANDROID (obviously Android [NDK])
Notational conventions in this document
---------------------------------------
Throughout this document, we use the following conventions in command
examples:
$ command Any line starting with a dollar sign
($) is a command line.
{ word1 | word2 | word3 } This denotes a mandatory choice, to be
replaced with one of the given words.
A simple example would be this:
$ echo { FOO | BAR | COOKIE }
which is to be understood as one of
these:
$ echo FOO
- or -
$ echo BAR
- or -
$ echo COOKIE
[ word1 | word2 | word3 ] Similar to { word1 | word2 | word3 }
except it's optional to give any of
those. In addition to the examples
above, this would also be valid:
$ echo
{{ target }} This denotes a mandatory word or
sequence of words of some sort. A
simple example would be this:
$ type {{ filename }}
which is to be understood to use the
command 'type' on some file name
determined by the user.
[[ options ]] Similar to {{ target }}, but is
optional.
Note that the notation assumes spaces around {, }, [, ], {{, }} and
[[, ]]. This is to differentiate from OpenVMS directory
specifications, which also use [ and ], but without spaces.
Quick Start
-----------
If you want to just get on with it, do:
on Unix (again, this includes Mac OS/X):
$ ./config
$ make
$ make test
$ make install
on OpenVMS:
$ @config
$ mms
$ mms test
$ mms install
on Windows (only pick one of the targets for configuration):
$ perl Configure { VC-WIN32 | VC-WIN64A | VC-WIN64I | VC-CE }
$ nmake
$ nmake test
$ nmake install
Note that in order to perform the install step above you need to have
appropriate permissions to write to the installation directory.
If any of these steps fails, see section Installation in Detail below.
This will build and install OpenSSL in the default location, which is:
Unix: normal installation directories under /usr/local
OpenVMS: SYS$COMMON:[OPENSSL]
Windows: C:\Program Files\OpenSSL or C:\Program Files (x86)\OpenSSL
The installation directory should be appropriately protected to ensure
unprivileged users cannot make changes to OpenSSL binaries or files, or install
engines. If you already have a pre-installed version of OpenSSL as part of
your Operating System it is recommended that you do not overwrite the system
version and instead install to somewhere else.
If you want to install it anywhere else, run config like this (the options
--prefix and --openssldir are explained further down, and the values shown
here are mere examples):
On Unix:
$ ./config --prefix=/opt/openssl --openssldir=/usr/local/ssl
On OpenVMS:
$ @config --prefix=PROGRAM:[INSTALLS] --openssldir=SYS$MANAGER:[OPENSSL]
(Note: if you do add options to the configuration command, please make sure
you've read more than just this Quick Start, such as relevant NOTES.* files,
the options outline below, as configuration options may change the outcome
in otherwise unexpected ways)
Configuration Options
---------------------
There are several options to ./config (or ./Configure) to customize
the build (note that for Windows, the defaults for --prefix and
--openssldir depend in what configuration is used and what Windows
implementation OpenSSL is built on. More notes on this in NOTES.WIN):
--api=x.y.z
Don't build with support for deprecated APIs below the
specified version number. For example "--api=1.1.0" will
remove support for all APIS that were deprecated in OpenSSL
version 1.1.0 or below. This is a rather specialized option
for developers. If you just intend to remove all deprecated
APIs entirely (up to the current version), it is easier
to add the 'no-deprecated' option instead (see below).
--cross-compile-prefix=PREFIX
The PREFIX to include in front of commands for your
toolchain. It's likely to have to end with dash, e.g.
a-b-c- would invoke GNU compiler as a-b-c-gcc, etc.
Unfortunately cross-compiling is too case-specific to
put together one-size-fits-all instructions. You might
have to pass more flags or set up environment variables
to actually make it work. Android and iOS cases are
discussed in corresponding Configurations/15-*.conf
files. But there are cases when this option alone is
sufficient. For example to build the mingw64 target on
Linux "--cross-compile-prefix=x86_64-w64-mingw32-"
works. Naturally provided that mingw packages are
installed. Today Debian and Ubuntu users have option to
install a number of prepackaged cross-compilers along
with corresponding run-time and development packages for
"alien" hardware. To give another example
"--cross-compile-prefix=mipsel-linux-gnu-" suffices
in such case. Needless to mention that you have to
invoke ./Configure, not ./config, and pass your target
name explicitly. Also, note that --openssldir refers
to target's file system, not one you are building on.
--debug
Build OpenSSL with debugging symbols and zero optimization
level.
--libdir=DIR
The name of the directory under the top of the installation
directory tree (see the --prefix option) where libraries will
be installed. By default this is "lib". Note that on Windows
only ".lib" files will be stored in this location. dll files
will always be installed to the "bin" directory.
--openssldir=DIR
Directory for OpenSSL configuration files, and also the
default certificate and key store. Defaults are:
Unix: /usr/local/ssl
Windows: C:\Program Files\Common Files\SSL
or C:\Program Files (x86)\Common Files\SSL
OpenVMS: SYS$COMMON:[OPENSSL-COMMON]
--prefix=DIR
The top of the installation directory tree. Defaults are:
Unix: /usr/local
Windows: C:\Program Files\OpenSSL
or C:\Program Files (x86)\OpenSSL
OpenVMS: SYS$COMMON:[OPENSSL]
--release
Build OpenSSL without debugging symbols. This is the default.
--strict-warnings
This is a developer flag that switches on various compiler
options recommended for OpenSSL development. It only works
when using gcc or clang as the compiler. If you are
developing a patch for OpenSSL then it is recommended that
you use this option where possible.
--with-zlib-include=DIR
The directory for the location of the zlib include file. This
option is only necessary if enable-zlib (see below) is used
and the include file is not already on the system include
path.
--with-zlib-lib=LIB
On Unix: this is the directory containing the zlib library.
If not provided the system library path will be used.
On Windows: this is the filename of the zlib library (with or
without a path). This flag must be provided if the
zlib-dynamic option is not also used. If zlib-dynamic is used
then this flag is optional and a default value ("ZLIB1") is
used if not provided.
On VMS: this is the filename of the zlib library (with or
without a path). This flag is optional and if not provided
then "GNV$LIBZSHR", "GNV$LIBZSHR32" or "GNV$LIBZSHR64" is
used by default depending on the pointer size chosen.
--with-rand-seed=seed1[,seed2,...]
A comma separated list of seeding methods which will be tried
by OpenSSL in order to obtain random input (a.k.a "entropy")
for seeding its cryptographically secure random number
generator (CSPRNG). The current seeding methods are:
os: Use a trusted operating system entropy source.
This is the default method if such an entropy
source exists.
getrandom: Use the L<getrandom(2)> or equivalent system
call.
devrandom: Use the first device from the DEVRANDOM list
which can be opened to read random bytes. The
DEVRANDOM preprocessor constant expands to
"/dev/urandom","/dev/random","/dev/srandom" on
most unix-ish operating systems.
egd: Check for an entropy generating daemon.
rdcpu: Use the RDSEED or RDRAND command if provided by
the CPU.
librandom: Use librandom (not implemented yet).
none: Disable automatic seeding. This is the default
on some operating systems where no suitable
entropy source exists, or no support for it is
implemented yet.
For more information, see the section 'Note on random number
generation' at the end of this document.
no-afalgeng
Don't build the AFALG engine. This option will be forced if
on a platform that does not support AFALG.
enable-asan
Build with the Address sanitiser. This is a developer option
only. It may not work on all platforms and should never be
used in production environments. It will only work when used
with gcc or clang and should be used in conjunction with the
no-shared option.
no-asm
Do not use assembler code. This should be viewed as
debugging/trouble-shooting option rather than production.
On some platforms a small amount of assembler code may
still be used even with this option.
no-async
Do not build support for async operations.
no-autoalginit
Don't automatically load all supported ciphers and digests.
Typically OpenSSL will make available all of its supported
ciphers and digests. For a statically linked application this
may be undesirable if small executable size is an objective.
This only affects libcrypto. Ciphers and digests will have to
be loaded manually using EVP_add_cipher() and
EVP_add_digest() if this option is used. This option will
force a non-shared build.
no-autoerrinit
Don't automatically load all libcrypto/libssl error strings.
Typically OpenSSL will automatically load human readable
error strings. For a statically linked application this may
be undesirable if small executable size is an objective.
no-autoload-config
Don't automatically load the default openssl.cnf file.
Typically OpenSSL will automatically load a system config
file which configures default ssl options.
enable-buildtest-c++
While testing, generate C++ buildtest files that
simply check that the public OpenSSL header files
are usable standalone with C++.
Enabling this option demands extra care. For any
compiler flag given directly as configuration
option, you must ensure that it's valid for both
the C and the C++ compiler. If not, the C++ build
test will most likely break. As an alternative,
you can use the language specific variables, CFLAGS
and CXXFLAGS.
no-capieng
Don't build the CAPI engine. This option will be forced if
on a platform that does not support CAPI.
no-cms
Don't build support for CMS features
no-comp
Don't build support for SSL/TLS compression. If this option
is left enabled (the default), then compression will only
work if the zlib or zlib-dynamic options are also chosen.
enable-crypto-mdebug
Build support for debugging memory allocated via
OPENSSL_malloc() or OPENSSL_zalloc().
enable-crypto-mdebug-backtrace
As for crypto-mdebug, but additionally provide backtrace
information for allocated memory.
TO BE USED WITH CARE: this uses GNU C functionality, and
is therefore not usable for non-GNU config targets. If
your build complains about the use of '-rdynamic' or the
lack of header file execinfo.h, this option is not for you.
ALSO NOTE that even though execinfo.h is available on your
system (through Gnulib), the functions might just be stubs
that do nothing.
no-ct
Don't build support for Certificate Transparency.
no-deprecated
Don't build with support for any deprecated APIs. This is the
same as using "--api" and supplying the latest version
number.
no-dgram
Don't build support for datagram based BIOs. Selecting this
option will also force the disabling of DTLS.
no-dso
Don't build support for loading Dynamic Shared Objects.
enable-devcryptoeng
Build the /dev/crypto engine. It is automatically selected
on BSD implementations, in which case it can be disabled with
no-devcryptoeng.
no-dynamic-engine
Don't build the dynamically loaded engines. This only has an
effect in a "shared" build
no-ec
Don't build support for Elliptic Curves.
no-ec2m
Don't build support for binary Elliptic Curves
enable-ec_nistp_64_gcc_128
Enable support for optimised implementations of some commonly
used NIST elliptic curves.
This is only supported on platforms:
- with little-endian storage of non-byte types
- that tolerate misaligned memory references
- where the compiler:
- supports the non-standard type __uint128_t
- defines the built-in macro __SIZEOF_INT128__
enable-egd
Build support for gathering entropy from EGD (Entropy
Gathering Daemon).
no-engine
Don't build support for loading engines.
no-err
Don't compile in any error strings.
enable-external-tests
Enable building of integration with external test suites.
This is a developer option and may not work on all platforms.
The only supported external test suite at the current time is
the BoringSSL test suite. See the file test/README.external
for further details.
no-filenames
Don't compile in filename and line number information (e.g.
for errors and memory allocation).
enable-fuzz-libfuzzer, enable-fuzz-afl
Build with support for fuzzing using either libfuzzer or AFL.
These are developer options only. They may not work on all
platforms and should never be used in production environments.
See the file fuzz/README.md for further details.
no-gost
Don't build support for GOST based ciphersuites. Note that
if this feature is enabled then GOST ciphersuites are only
available if the GOST algorithms are also available through
loading an externally supplied engine.
no-hw-padlock
Don't build the padlock engine.
no-makedepend
Don't generate dependencies.
no-multiblock
Don't build support for writing multiple records in one
go in libssl (Note: this is a different capability to the
pipelining functionality).
no-nextprotoneg
Don't build support for the NPN TLS extension.
no-ocsp
Don't build support for OCSP.
no-pic
Don't build with support for Position Independent Code.
no-pinshared By default OpenSSL will attempt to stay in memory until the
process exits. This is so that libcrypto and libssl can be
properly cleaned up automatically via an "atexit()" handler.
The handler is registered by libcrypto and cleans up both
libraries. On some platforms the atexit() handler will run on
unload of libcrypto (if it has been dynamically loaded)
rather than at process exit. This option can be used to stop
OpenSSL from attempting to stay in memory until the process
exits. This could lead to crashes if either libcrypto or
libssl have already been unloaded at the point
that the atexit handler is invoked, e.g. on a platform which
calls atexit() on unload of the library, and libssl is
unloaded before libcrypto then a crash is likely to happen.
Applications can suppress running of the atexit() handler at
run time by using the OPENSSL_INIT_NO_ATEXIT option to
OPENSSL_init_crypto(). See the man page for it for further
details.
no-posix-io
Don't use POSIX IO capabilities.
no-psk
Don't build support for Pre-Shared Key based ciphersuites.
no-rdrand
Don't use hardware RDRAND capabilities.
no-rfc3779
Don't build support for RFC3779 ("X.509 Extensions for IP
Addresses and AS Identifiers")
sctp
Build support for SCTP
no-shared
Do not create shared libraries, only static ones. See "Note
on shared libraries" below.
no-sock
Don't build support for socket BIOs
no-srp
Don't build support for SRP or SRP based ciphersuites.
no-srtp
Don't build SRTP support
no-sse2
Exclude SSE2 code paths from 32-bit x86 assembly modules.
Normally SSE2 extension is detected at run-time, but the
decision whether or not the machine code will be executed
is taken solely on CPU capability vector. This means that
if you happen to run OS kernel which does not support SSE2
extension on Intel P4 processor, then your application
might be exposed to "illegal instruction" exception.
There might be a way to enable support in kernel, e.g.
FreeBSD kernel can be compiled with CPU_ENABLE_SSE, and
there is a way to disengage SSE2 code paths upon application
start-up, but if you aim for wider "audience" running
such kernel, consider no-sse2. Both the 386 and
no-asm options imply no-sse2.
enable-ssl-trace
Build with the SSL Trace capabilities (adds the "-trace"
option to s_client and s_server).
no-static-engine
Don't build the statically linked engines. This only
has an impact when not built "shared".
no-stdio
Don't use anything from the C header file "stdio.h" that
makes use of the "FILE" type. Only libcrypto and libssl can
be built in this way. Using this option will suppress
building the command line applications. Additionally since
the OpenSSL tests also use the command line applications the
tests will also be skipped.
no-tests
Don't build test programs or run any test.
no-threads
Don't try to build with support for multi-threaded
applications.
threads
Build with support for multi-threaded applications. Most
platforms will enable this by default. However if on a
platform where this is not the case then this will usually
require additional system-dependent options! See "Note on
multi-threading" below.
no-ts
Don't build Time Stamping Authority support.
enable-ubsan
Build with the Undefined Behaviour sanitiser. This is a
developer option only. It may not work on all platforms and
should never be used in production environments. It will only
work when used with gcc or clang and should be used in
conjunction with the "-DPEDANTIC" option (or the
--strict-warnings option).
no-ui-console
Don't build with the "UI" console method (i.e. the "UI"
method that enables text based console prompts).
enable-unit-test
Enable additional unit test APIs. This should not typically
be used in production deployments.
enable-weak-ssl-ciphers
Build support for SSL/TLS ciphers that are considered "weak"
(e.g. RC4 based ciphersuites).
zlib
Build with support for zlib compression/decompression.
zlib-dynamic
Like "zlib", but has OpenSSL load the zlib library
dynamically when needed. This is only supported on systems
where loading of shared libraries is supported.
386
In 32-bit x86 builds, when generating assembly modules,
use the 80386 instruction set only (the default x86 code
is more efficient, but requires at least a 486). Note:
This doesn't affect code generated by compiler, you're
likely to complement configuration command line with
suitable compiler-specific option.
no-<prot>
Don't build support for negotiating the specified SSL/TLS
protocol (one of ssl, ssl3, tls, tls1, tls1_1, tls1_2,
tls1_3, dtls, dtls1 or dtls1_2). If "no-tls" is selected then
all of tls1, tls1_1, tls1_2 and tls1_3 are disabled.
Similarly "no-dtls" will disable dtls1 and dtls1_2. The
"no-ssl" option is synonymous with "no-ssl3". Note this only
affects version negotiation. OpenSSL will still provide the
methods for applications to explicitly select the individual
protocol versions.
no-<prot>-method
As for no-<prot> but in addition do not build the methods for
applications to explicitly select individual protocol
versions. Note that there is no "no-tls1_3-method" option
because there is no application method for TLSv1.3. Using
individual protocol methods directly is deprecated.
Applications should use TLS_method() instead.
enable-<alg>
Build with support for the specified algorithm, where <alg>
is one of: md2 or rc5.
no-<alg>
Build without support for the specified algorithm, where
<alg> is one of: aria, bf, blake2, camellia, cast, chacha,
cmac, des, dh, dsa, ecdh, ecdsa, idea, md4, mdc2, ocb,
poly1305, rc2, rc4, rmd160, scrypt, seed, siphash, sm2, sm3,
sm4 or whirlpool. The "ripemd" algorithm is deprecated and
if used is synonymous with rmd160.
-Dxxx, -Ixxx, -Wp, -lxxx, -Lxxx, -Wl, -rpath, -R, -framework, -static
These system specific options will be recognised and
passed through to the compiler to allow you to define
preprocessor symbols, specify additional libraries, library
directories or other compiler options. It might be worth
noting that some compilers generate code specifically for
processor the compiler currently executes on. This is not
necessarily what you might have in mind, since it might be
unsuitable for execution on other, typically older,
processor. Consult your compiler documentation.
Take note of the VAR=value documentation below and how
these flags interact with those variables.
-xxx, +xxx, /xxx
Additional options that are not otherwise recognised are
passed through as they are to the compiler as well.
Unix-style options beginning with a '-' or '+' and
Windows-style options beginning with a '/' are recognized.
Again, consult your compiler documentation.
If the option contains arguments separated by spaces,
then the URL-style notation %20 can be used for the space
character in order to avoid having to quote the option.
For example, -opt%20arg gets expanded to -opt arg.
In fact, any ASCII character can be encoded as %xx using its
hexadecimal encoding.
Take note of the VAR=value documentation below and how
these flags interact with those variables.
VAR=value
Assignment of environment variable for Configure. These
work just like normal environment variable assignments,
but are supported on all platforms and are confined to
the configuration scripts only. These assignments override
the corresponding value in the inherited environment, if
there is one.
The following variables are used as "make variables" and
can be used as an alternative to giving preprocessor,
compiler and linker options directly as configuration.
The following variables are supported:
AR The static library archiver.
ARFLAGS Flags for the static library archiver.
AS The assembler compiler.
ASFLAGS Flags for the assembler compiler.
CC The C compiler.
CFLAGS Flags for the C compiler.
CXX The C++ compiler.
CXXFLAGS Flags for the C++ compiler.
CPP The C/C++ preprocessor.
CPPFLAGS Flags for the C/C++ preprocessor.
CPPDEFINES List of CPP macro definitions, separated
by a platform specific character (':' or
space for Unix, ';' for Windows, ',' for
VMS). This can be used instead of using
-D (or what corresponds to that on your
compiler) in CPPFLAGS.
CPPINCLUDES List of CPP inclusion directories, separated
the same way as for CPPDEFINES. This can
be used instead of -I (or what corresponds
to that on your compiler) in CPPFLAGS.
HASHBANGPERL Perl invocation to be inserted after '#!'
in public perl scripts (only relevant on
Unix).
LD The program linker (not used on Unix, $(CC)
is used there).
LDFLAGS Flags for the shared library, DSO and
program linker.
LDLIBS Extra libraries to use when linking.
Takes the form of a space separated list
of library specifications on Unix and
Windows, and as a comma separated list of
libraries on VMS.
RANLIB The library archive indexer.
RC The Windows resource compiler.
RCFLAGS Flags for the Windows resource compiler.
RM The command to remove files and directories.
These cannot be mixed with compiling / linking flags given
on the command line. In other words, something like this
isn't permitted.
./config -DFOO CPPFLAGS=-DBAR -DCOOKIE
Backward compatibility note:
To be compatible with older configuration scripts, the
environment variables are ignored if compiling / linking
flags are given on the command line, except for these:
AR, CC, CXX, CROSS_COMPILE, HASHBANGPERL, PERL, RANLIB, RC
and WINDRES
For example, the following command will not see -DBAR:
CPPFLAGS=-DBAR ./config -DCOOKIE
However, the following will see both set variables:
CC=gcc CROSS_COMPILE=x86_64-w64-mingw32- \
./config -DCOOKIE
If CC is set, it is advisable to also set CXX to ensure
both C and C++ compilers are in the same "family". This
becomes relevant with 'enable-external-tests' and
'enable-buildtest-c++'.
reconf
reconfigure
Reconfigure from earlier data. This fetches the previous
command line options and environment from data saved in
"configdata.pm", and runs the configuration process again,
using these options and environment.
Note: NO other option is permitted together with "reconf".
This means that you also MUST use "./Configure" (or
what corresponds to that on non-Unix platforms) directly
to invoke this option.
Note: The original configuration saves away values for ALL
environment variables that were used, and if they weren't
defined, they are still saved away with information that
they weren't originally defined. This information takes
precedence over environment variables that are defined
when reconfiguring.
Displaying configuration data
-----------------------------
The configuration script itself will say very little, and finishes by
creating "configdata.pm". This perl module can be loaded by other scripts
to find all the configuration data, and it can also be used as a script to
display all sorts of configuration data in a human readable form.
For more information, please do:
$ ./configdata.pm --help # Unix
or
$ perl configdata.pm --help # Windows and VMS
Installation in Detail
----------------------
1a. Configure OpenSSL for your operation system automatically:
NOTE: This is not available on Windows.
$ ./config [[ options ]] # Unix
or
$ @config [[ options ]] ! OpenVMS
For the remainder of this text, the Unix form will be used in all
examples, please use the appropriate form for your platform.
This guesses at your operating system (and compiler, if necessary) and
configures OpenSSL based on this guess. Run ./config -t to see
if it guessed correctly. If you want to use a different compiler, you
are cross-compiling for another platform, or the ./config guess was
wrong for other reasons, go to step 1b. Otherwise go to step 2.
On some systems, you can include debugging information as follows:
$ ./config -d [[ options ]]
1b. Configure OpenSSL for your operating system manually
OpenSSL knows about a range of different operating system, hardware and
compiler combinations. To see the ones it knows about, run
$ ./Configure # Unix
or
$ perl Configure # All other platforms
For the remainder of this text, the Unix form will be used in all
examples, please use the appropriate form for your platform.
Pick a suitable name from the list that matches your system. For most
operating systems there is a choice between using "cc" or "gcc". When
you have identified your system (and if necessary compiler) use this name
as the argument to Configure. For example, a "linux-elf" user would
run:
$ ./Configure linux-elf [[ options ]]
If your system isn't listed, you will have to create a configuration
file named Configurations/{{ something }}.conf and add the correct
configuration for your system. See the available configs as examples
and read Configurations/README and Configurations/README.design for
more information.
The generic configurations "cc" or "gcc" should usually work on 32 bit
Unix-like systems.
Configure creates a build file ("Makefile" on Unix, "makefile" on Windows
and "descrip.mms" on OpenVMS) from a suitable template in Configurations,
and defines various macros in include/openssl/opensslconf.h (generated from
include/openssl/opensslconf.h.in).
1c. Configure OpenSSL for building outside of the source tree.
OpenSSL can be configured to build in a build directory separate from
the directory with the source code. It's done by placing yourself in
some other directory and invoking the configuration commands from
there.
Unix example:
$ mkdir /var/tmp/openssl-build
$ cd /var/tmp/openssl-build
$ /PATH/TO/OPENSSL/SOURCE/config [[ options ]]
or
$ /PATH/TO/OPENSSL/SOURCE/Configure {{ target }} [[ options ]]
OpenVMS example:
$ set default sys$login:
$ create/dir [.tmp.openssl-build]
$ set default [.tmp.openssl-build]
$ @[PATH.TO.OPENSSL.SOURCE]config [[ options ]]
or
$ @[PATH.TO.OPENSSL.SOURCE]Configure {{ target }} [[ options ]]
Windows example:
$ C:
$ mkdir \temp-openssl
$ cd \temp-openssl
$ perl d:\PATH\TO\OPENSSL\SOURCE\Configure {{ target }} [[ options ]]
Paths can be relative just as well as absolute. Configure will
do its best to translate them to relative paths whenever possible.
2. Build OpenSSL by running:
$ make # Unix
$ mms ! (or mmk) OpenVMS
$ nmake # Windows
This will build the OpenSSL libraries (libcrypto.a and libssl.a on
Unix, corresponding on other platforms) and the OpenSSL binary
("openssl"). The libraries will be built in the top-level directory,
and the binary will be in the "apps" subdirectory.
Troubleshooting:
If the build fails, look at the output. There may be reasons
for the failure that aren't problems in OpenSSL itself (like
missing standard headers).
If the build succeeded previously, but fails after a source or
configuration change, it might be helpful to clean the build tree
before attempting another build. Use this command:
$ make clean # Unix
$ mms clean ! (or mmk) OpenVMS
$ nmake clean # Windows
Assembler error messages can sometimes be sidestepped by using the
"no-asm" configuration option.
Compiling parts of OpenSSL with gcc and others with the system
compiler will result in unresolved symbols on some systems.
If you are still having problems you can get help by sending an email
to the openssl-users email list (see
https://www.openssl.org/community/mailinglists.html for details). If
it is a bug with OpenSSL itself, please open an issue on GitHub, at
https://github.com/openssl/openssl/issues. Please review the existing
ones first; maybe the bug was already reported or has already been
fixed.
3. After a successful build, the libraries should be tested. Run:
$ make test # Unix
$ mms test ! OpenVMS
$ nmake test # Windows
NOTE: you MUST run the tests from an unprivileged account (or
disable your privileges temporarily if your platform allows it).
If some tests fail, look at the output. There may be reasons for
the failure that isn't a problem in OpenSSL itself (like a
malfunction with Perl). You may want increased verbosity, that
can be accomplished like this:
$ make VERBOSE=1 test # Unix
$ mms /macro=(VERBOSE=1) test ! OpenVMS
$ nmake VERBOSE=1 test # Windows
If you want to run just one or a few specific tests, you can use
the make variable TESTS to specify them, like this:
$ make TESTS='test_rsa test_dsa' test # Unix
$ mms/macro="TESTS=test_rsa test_dsa" test ! OpenVMS
$ nmake TESTS='test_rsa test_dsa' test # Windows
And of course, you can combine (Unix example shown):
$ make VERBOSE=1 TESTS='test_rsa test_dsa' test
You can find the list of available tests like this:
$ make list-tests # Unix
$ mms list-tests ! OpenVMS
$ nmake list-tests # Windows
Have a look at the manual for the perl module Test::Harness to
see what other HARNESS_* variables there are.
If you find a problem with OpenSSL itself, try removing any
compiler optimization flags from the CFLAGS line in Makefile and
run "make clean; make" or corresponding.
To report a bug please open an issue on GitHub, at
https://github.com/openssl/openssl/issues.
For more details on how the make variables TESTS can be used,
see section TESTS in Detail below.
4. If everything tests ok, install OpenSSL with
$ make install # Unix
$ mms install ! OpenVMS
$ nmake install # Windows
Note that in order to perform the install step above you need to have
appropriate permissions to write to the installation directory.
The above commands will install all the software components in this
directory tree under PREFIX (the directory given with --prefix or its
default):
Unix:
bin/ Contains the openssl binary and a few other
utility scripts.
include/openssl
Contains the header files needed if you want
to build your own programs that use libcrypto
or libssl.
lib Contains the OpenSSL library files.
lib/engines Contains the OpenSSL dynamically loadable engines.
share/man/man1 Contains the OpenSSL command line man-pages.
share/man/man3 Contains the OpenSSL library calls man-pages.
share/man/man5 Contains the OpenSSL configuration format man-pages.
share/man/man7 Contains the OpenSSL other misc man-pages.
share/doc/openssl/html/man1
share/doc/openssl/html/man3
share/doc/openssl/html/man5
share/doc/openssl/html/man7
Contains the HTML rendition of the man-pages.
OpenVMS ('arch' is replaced with the architecture name, "ALPHA"
or "IA64", 'sover' is replaced with the shared library version
(0101 for 1.1.x), and 'pz' is replaced with the pointer size
OpenSSL was built with):
[.EXE.'arch'] Contains the openssl binary.
[.EXE] Contains a few utility scripts.
[.include.openssl]
Contains the header files needed if you want
to build your own programs that use libcrypto
or libssl.
[.LIB.'arch'] Contains the OpenSSL library files.
[.ENGINES'sover''pz'.'arch']
Contains the OpenSSL dynamically loadable engines.
[.SYS$STARTUP] Contains startup, login and shutdown scripts.
These define appropriate logical names and
command symbols.
[.SYSTEST] Contains the installation verification procedure.
[.HTML] Contains the HTML rendition of the manual pages.
Additionally, install will add the following directories under
OPENSSLDIR (the directory given with --openssldir or its default)
for you convenience:
certs Initially empty, this is the default location
for certificate files.
private Initially empty, this is the default location
for private key files.
misc Various scripts.
The installation directory should be appropriately protected to ensure
unprivileged users cannot make changes to OpenSSL binaries or files, or
install engines. If you already have a pre-installed version of OpenSSL as
part of your Operating System it is recommended that you do not overwrite
the system version and instead install to somewhere else.