-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathnormalize.py
180 lines (149 loc) · 5.97 KB
/
normalize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#!/usr/bin/env python
import sys
import csv
import io
import re
import argparse
# All csv line endings should be unix style
class excel_unix(csv.excel):
lineterminator = '\n'
csv.register_dialect("excel-unix", excel_unix)
# preferred column order
colorder = ['county', 'precinct', 'precinct_name', 'office', 'district', 'party',
'candidate', 'incumbent',
'votes', 'pct', 'election_day', 'election_day_machine', 'election_day_paper',
'election_day_ada', 'early/absentee',
'early_voting', 'early_voting_machine', 'early_voting_paper',
# I believe these can be mapped to machine and paper above, but not confirmed
'early_voting_ts', 'early_voting_os',
'absentee', 'mail', 'provisional', 'limited', 'ballot_style']
def remove_unnamed_columns(path):
lines = []
with open(path, 'rb') as f:
headers = f.readline()
eol = '\n'
if headers[-2] == '\r':
eol = '\r\n'
if headers[-len(eol):] == eol:
headers = headers[:-len(eol)]
headers_nonempty = headers.rstrip(',')
if headers_nonempty == headers:
# No trailing non-empty column names
return
lines.append(headers_nonempty + eol)
nempty = len(headers) - len(headers_nonempty)
end = (','*nempty)
while True:
row = f.readline()
if not row:
break
if row[-len(eol):] == eol:
row = row[:-len(eol)]
if not row.endswith(end):
print("{}: Not removing unnamed columns because there is data in some of them {!r}".format(path, (nempty, row[len(row)-len(end):])))
return
row = row[:-len(end)] + eol
lines.append(row)
with open(path, 'wb') as f:
for line in lines:
f.write(line)
def normalize_column_name(colname):
xform_map = {
'precinct': ['precinct_number'],
'votes': ['total', 'total votes'],
'election_day': ['election', 'election day'],
'election_day_machine': ['ed ivo', 'election_day_ivo'],
'election_day_paper': ['ed m-100'],
'early_voting': ['early', 'early_votes', 'early voting', 'early_ voting'],
'early_voting_machine': ['ev ivo'],
'early_voting_paper': ['early_votes_paper', 'paper_ev', 'ev m-100'],
'early/absentee': ['early/absente'],
'mail': ['paper_mail'],
}
colname = colname.strip().lower()
if colname in colorder:
return colname
for (canonical, deviant_list) in xform_map.items():
if colname in deviant_list:
return canonical
else:
return colname
def column_names(path, show_unmapped=False):
with open(path, 'r') as f:
try:
headers = next(csv.reader(f))
f.seek(0)
f.readline()
row_data = f.read()
except:
print(path)
raise
norm_headers = []
unknown_columns = []
for colname in headers:
colname = normalize_column_name(colname)
norm_headers.append(colname)
if colname and colname not in colorder:
unknown_columns.append(colname)
if unknown_columns and show_unmapped:
for colname in unknown_columns:
print("{!r}".format(colname))
if norm_headers == headers:
return
with open(path, 'w') as wf:
sio = io.StringIO()
writer = csv.DictWriter(wf, fieldnames=norm_headers, dialect='excel-unix')
writer.writeheader()
wf.write(row_data)
def line_endings(path):
with open(path, 'rb') as f:
data = f.read()
newdata, nrepl = re.subn(b'[\r\n]+', b'\n', data)
assert newdata, nrepl
if newdata != data:
print(path)
with open(path, 'wb') as f:
f.write(newdata)
def to_utf8(path):
with open(path, 'rb') as f:
data = f.read()
try:
ddata = data.decode('utf8')
except UnicodeDecodeError:
# Not 7-bit ascii or utf8
try:
ddata = data.decode('latin')
print("{}: latin -> utf8".format(path))
with open(path, 'wb') as f:
f.write(ddata.encode('utf8'))
except UnicodeDecodeError:
# Not latin either, print offending file
print("{}:Not encoded as ascii, latin, or utf8".format(path))
def main():
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(title='subcommands',
description='valid subcommands',dest='command',help='sub-command help')
sparser = subparsers.add_parser('remove_unnamed_columns', help='remove unnamed columns',
description="Remove unnamed columns in passed csv files.")
sparser.add_argument('paths', nargs='+', metavar='csvfile')
sparser = subparsers.add_parser('column_names', help='normalize column names',
description="Ensure column names in csv files passed are normalized.")
sparser.add_argument('-u', '--show_unmapped', metavar='csvfile')
sparser.add_argument('paths', nargs='+', metavar='csvfile')
sparser = subparsers.add_parser('line_endings', help='normalize to unix line endings',
description="Ensure all paths passed are normalized to unix-style line endings.")
sparser.add_argument('paths', nargs='+', metavar='path')
sparser = subparsers.add_parser('utf8', help='normalize to utf8',
description="Ensure all paths passed are normalized to utf8.")
sparser.add_argument('paths', nargs='+', metavar='path')
args = parser.parse_args()
params = vars(args).copy()
del params['command']
del params['paths']
if 'paths' in args:
for path in args.paths:
globals()[args.command](path, **params)
else:
globals()[args.command](**params)
if __name__ == "__main__":
exit(main())