-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsigner.go
179 lines (162 loc) · 5.42 KB
/
signer.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
// file except in compliance with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software distributed under
// the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
// ANY KIND, either express or implied. See the License for the specific language
// governing permissions and limitations under the License.
package okms
import (
"context"
"crypto"
"crypto/rsa"
"encoding/base64"
"errors"
"fmt"
"io"
"github.com/google/uuid"
"github.com/ovh/okms-sdk-go/types"
"golang.org/x/crypto/cryptobyte"
"golang.org/x/crypto/cryptobyte/asn1"
)
// NewSigner creates a new [crypto.Signer] for the given key-pair.
//
// NewSigner cannot be used with symetric keys.
func (client *Client) NewSigner(ctx context.Context, serviceKeyID uuid.UUID) (crypto.Signer, error) {
k, err := client.ExportJwkPublicKey(ctx, serviceKeyID)
if err != nil {
return nil, err
}
return newSigner(client, k)
}
// newSigner creates a new [crypto.Signer] using the given public JsonWebKey and
// its remote private key.
//
// newSigner cannot be used with symetric keys.
func newSigner(api SignatureApi, jwk *types.JsonWebKeyResponse) (crypto.Signer, error) {
pubKey, err := jwk.PublicKey()
if err != nil {
return nil, err
}
return &jwkSigner{
JsonWebKeyResponse: jwk,
api: api,
pubKey: pubKey,
}, nil
}
type jwkSigner struct {
*types.JsonWebKeyResponse
api SignatureApi
pubKey crypto.PublicKey
}
// Public returns the public key corresponding to the opaque,
// private key.
func (sig *jwkSigner) Public() crypto.PublicKey {
return sig.pubKey
}
// Sign signs digest with the private key, possibly using entropy from
// rand. For an RSA key, the resulting signature should be either a
// PKCS #1 v1.5 or PSS signature (as indicated by opts). For an (EC)DSA
// key, it should be a DER-serialized, ASN.1 signature structure.
//
// Hash implements the SignerOpts interface and, in most cases, one can
// simply pass in the hash function used as opts. Sign may also attempt
// to type assert opts to other types in order to obtain algorithm
// specific values. See the documentation in each package for details.
//
// Note that when a signature of a hash of a larger message is needed,
// the caller is responsible for hashing the larger message and passing
// the hash (as digest) and the hash function (as opts) to Sign.
func (sign *jwkSigner) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) (signature []byte, err error) {
if sign.Kty == types.EC {
// ECDSA signature
return sign.signEcdsa(digest, opts.HashFunc())
} else if sign.Kty == types.RSA {
if pssOpts, ok := opts.(*rsa.PSSOptions); ok {
// RSA PSS signature
return sign.signRsaPss(digest, pssOpts)
} else {
// PKCS1 v1.5 signature
return sign.signRsaPkcs15(digest, opts.HashFunc())
}
}
return nil, errors.New("Invalid key type")
}
func (sign *jwkSigner) signRsaPkcs15(digest []byte, hash crypto.Hash) ([]byte, error) {
return sign.doSign(digest, hash, "RS")
}
func (sign *jwkSigner) signRsaPss(digest []byte, opts *rsa.PSSOptions) ([]byte, error) {
// The size of the salt value is the same size as the hash function output as defined in https://www.rfc-editor.org/rfc/rfc7518#section-3.5
if opts.SaltLength != rsa.PSSSaltLengthAuto && opts.SaltLength != rsa.PSSSaltLengthEqualsHash && opts.SaltLength != opts.Hash.Size() {
return nil, errors.New("Invalid PSS salt length")
}
return sign.doSign(digest, opts.HashFunc(), "PS")
}
func (sign *jwkSigner) signEcdsa(digest []byte, hash crypto.Hash) ([]byte, error) {
sig, err := sign.doSign(digest, hash, "ES")
if err != nil {
return nil, err
}
r, s := sig[:len(sig)/2], sig[len(sig)/2:]
asn1Sig, err := encodeEcdsaSignature(r, s)
if err != nil {
return nil, err
}
return asn1Sig, nil
}
func (sign *jwkSigner) doSign(digest []byte, hash crypto.Hash, algPrefix string) ([]byte, error) {
alg, err := getJwaAlgName(algPrefix, hash)
if err != nil {
return nil, err
}
keyId, err := uuid.Parse(sign.Kid)
if err != nil {
return nil, fmt.Errorf("Key ID %q is not a valid UUID", sign.Kid)
}
rawFormat := types.Raw
resp, err := sign.api.Sign(context.Background(), keyId, &rawFormat, alg, true, digest)
if err != nil {
return nil, err
}
return base64.StdEncoding.DecodeString(resp)
}
func encodeEcdsaSignature(r, s []byte) ([]byte, error) {
var b cryptobyte.Builder
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
addASN1IntBytes(b, r)
addASN1IntBytes(b, s)
})
return b.Bytes()
}
// addASN1IntBytes encodes in ASN.1 a positive integer represented as
// a big-endian byte slice with zero or more leading zeroes.
func addASN1IntBytes(b *cryptobyte.Builder, bytes []byte) {
for len(bytes) > 0 && bytes[0] == 0 {
bytes = bytes[1:]
}
if len(bytes) == 0 {
b.SetError(errors.New("invalid integer"))
return
}
b.AddASN1(asn1.INTEGER, func(c *cryptobyte.Builder) {
if bytes[0]&0x80 != 0 {
c.AddUint8(0)
}
c.AddBytes(bytes)
})
}
func getJwaAlgName(prefix string, hash crypto.Hash) (types.DigitalSignatureAlgorithms, error) {
alg := ""
switch hash {
case crypto.SHA256:
alg = "256"
case crypto.SHA384:
alg = "384"
case crypto.SHA512:
alg = "512"
default:
return "", errors.New("Unsupported hash function")
}
return types.DigitalSignatureAlgorithms(prefix + alg), nil
}