-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathdatasets.py
490 lines (409 loc) · 19.6 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import collections
import numpy as np
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.datasets import mnist
from tensorflow.keras.datasets import cifar10
import scipy.io
from scipy import ndimage
from scipy.stats import ortho_group
import sklearn.preprocessing
import pickle
import utils
Dataset = collections.namedtuple('Dataset',
'get_data n_src_train n_src_valid n_target_unsup n_target_val n_target_test target_end '
'n_classes input_shape')
SplitData = collections.namedtuple('SplitData',
('src_train_x src_val_x src_train_y src_val_y target_unsup_x target_val_x final_target_test_x '
'debug_target_unsup_y target_val_y final_target_test_y inter_x inter_y'))
image_options = {
'batch_size': 100,
'class_mode': 'binary',
'color_mode': 'grayscale',
}
def split_sizes(array, sizes):
indices = np.cumsum(sizes)
return np.split(array, indices)
def shuffle(xs, ys):
indices = list(range(len(xs)))
np.random.shuffle(indices)
return xs[indices], ys[indices]
def get_split_data(dataset):
Xs, Ys = dataset.get_data()
n_src = dataset.n_src_train + dataset.n_src_valid
n_target = dataset.n_target_unsup + dataset.n_target_val + dataset.n_target_test
src_x, src_y = shuffle(Xs[:n_src], Ys[:n_src])
target_x, target_y = shuffle(
Xs[dataset.target_end-n_target:dataset.target_end],
Ys[dataset.target_end-n_target:dataset.target_end])
[src_train_x, src_val_x] = split_sizes(src_x, [dataset.n_src_train])
[src_train_y, src_val_y] = split_sizes(src_y, [dataset.n_src_train])
[target_unsup_x, target_val_x, final_target_test_x] = split_sizes(
target_x, [dataset.n_target_unsup, dataset.n_target_val])
[debug_target_unsup_y, target_val_y, final_target_test_y] = split_sizes(
target_y, [dataset.n_target_unsup, dataset.n_target_val])
inter_x, inter_y = Xs[n_src:dataset.target_end-n_target], Ys[n_src:dataset.target_end-n_target]
return SplitData(
src_train_x=src_train_x,
src_val_x=src_val_x,
src_train_y=src_train_y,
src_val_y=src_val_y,
target_unsup_x=target_unsup_x,
target_val_x=target_val_x,
final_target_test_x=final_target_test_x,
debug_target_unsup_y=debug_target_unsup_y,
target_val_y=target_val_y,
final_target_test_y=final_target_test_y,
inter_x=inter_x,
inter_y=inter_y,
)
# Gaussian dataset.
def shape_means(means):
means = np.array(means)
if len(means.shape) == 1:
means = np.expand_dims(means, axis=-1)
else:
assert(len(means.shape) == 2)
return means
def shape_sigmas(sigmas, means):
sigmas = np.array(sigmas)
shape_len = len(sigmas.shape)
assert(shape_len == 1 or shape_len == 3)
new_sigmas = sigmas
if shape_len == 1:
c = np.expand_dims(np.expand_dims(sigmas, axis=-1), axis=-1)
d = means.shape[1]
new_sigmas = c * np.eye(d)
assert(new_sigmas.shape == (sigmas.shape[0], d, d))
return new_sigmas
def get_gaussian_at_alpha(source_means, source_sigmas, target_means, target_sigmas, alpha):
num_classes = source_means.shape[0]
class_prob = 1.0 / num_classes
y = np.argmax(np.random.multinomial(1, [class_prob] * num_classes))
mean = source_means[y] * (1 - alpha) + target_means[y] * alpha
sigma = source_sigmas[y] * (1 - alpha) + target_sigmas[y] * alpha
x = np.random.multivariate_normal(mean, sigma)
return x, y
def sample_gaussian_alpha(source_means, source_sigmas, target_means, target_sigmas,
alpha_low, alpha_high, N):
source_means = shape_means(source_means)
target_means = shape_means(target_means)
source_sigmas = shape_sigmas(source_sigmas, source_means)
target_sigmas = shape_sigmas(target_sigmas, target_means)
xs, ys = [], []
for i in range(N):
if alpha_low == alpha_high:
alpha = alpha_low
else:
alpha = np.random.uniform(low=alpha_low, high=alpha_high)
x, y = get_gaussian_at_alpha(
source_means, source_sigmas, target_means, target_sigmas, alpha)
xs.append(x)
ys.append(y)
return np.array(xs), np.array(ys)
def continual_gaussian_alpha(source_means, source_sigmas, target_means, target_sigmas,
alpha_low, alpha_high, N):
source_means = shape_means(source_means)
target_means = shape_means(target_means)
source_sigmas = shape_sigmas(source_sigmas, source_means)
target_sigmas = shape_sigmas(target_sigmas, target_means)
xs, ys = [], []
for i in range(N):
alpha = float(alpha_high - alpha_low) / N * i + alpha_low
x, y = get_gaussian_at_alpha(
source_means, source_sigmas, target_means, target_sigmas, alpha)
xs.append(x)
ys.append(y)
return np.array(xs), np.array(ys)
def make_moving_gaussian_data(
source_means, source_sigmas, target_means, target_sigmas,
source_alphas, inter_alphas, target_alphas,
n_src_tr, n_src_val, n_inter, n_trg_val, n_trg_tst):
src_tr_x, src_tr_y = sample_gaussian_alpha(
source_means, source_sigmas, target_means, target_sigmas,
source_alphas[0], source_alphas[1], N=n_src_tr)
src_val_x, src_val_y = sample_gaussian_alpha(
source_means, source_sigmas, target_means, target_sigmas,
source_alphas[0], source_alphas[1], N=n_src_val)
inter_x, inter_y = continual_gaussian_alpha(
source_means, source_sigmas, target_means, target_sigmas,
inter_alphas[0], inter_alphas[1], N=n_inter)
dir_inter_x, dir_inter_y = sample_gaussian_alpha(
source_means, source_sigmas, target_means, target_sigmas,
target_alphas[0], target_alphas[1], N=n_inter)
trg_val_x, trg_val_y = sample_gaussian_alpha(
source_means, source_sigmas, target_means, target_sigmas,
target_alphas[0], target_alphas[1], N=n_trg_val)
trg_test_x, trg_test_y = sample_gaussian_alpha(
source_means, source_sigmas, target_means, target_sigmas,
target_alphas[0], target_alphas[1], N=n_trg_tst)
return (src_tr_x, src_tr_y, src_val_x, src_val_y, inter_x, inter_y,
dir_inter_x, dir_inter_y, trg_val_x, trg_val_y, trg_test_x, trg_test_y)
def make_high_d_gaussian_data(
d, min_var, max_var, source_alphas, inter_alphas, target_alphas,
n_src_tr, n_src_val, n_inter, n_trg_val, n_trg_tst):
assert(min_var > 0)
means, var_list = [], []
for i in range(4):
means.append(np.random.multivariate_normal(np.zeros(d), np.eye(d)))
means[i] = means[i] / np.linalg.norm(means[i])
# Generate diagonal.
diag = np.diag(np.random.uniform(min_var, max_var, size=d))
rot = ortho_group.rvs(d)
var = np.matmul(rot, np.matmul(diag, np.linalg.inv(rot)))
var_list.append(var)
return make_moving_gaussian_data(
source_means=[means[0], means[1]], source_sigmas=[var_list[0], var_list[1]],
target_means=[means[2], means[3]], target_sigmas=[var_list[2], var_list[3]],
source_alphas=source_alphas, inter_alphas=inter_alphas, target_alphas=target_alphas,
n_src_tr=n_src_tr, n_src_val=n_src_val, n_inter=n_inter,
n_trg_val=n_trg_val, n_trg_tst=n_trg_tst)
def make_moving_gaussians(source_means, source_sigmas, target_means, target_sigmas, steps):
source_means = shape_means(source_means)
target_means = shape_means(target_means)
source_sigmas = shape_sigmas(source_sigmas, source_means)
target_sigmas = shape_sigmas(target_sigmas, target_means)
for i in range(steps):
alpha = float(i) / (steps - 1)
mean = source_means[y] * (1 - alpha) + target_means[y] * alpha
sigma = source_sigmas[y] * (1 - alpha) + target_sigmas[y] * alpha
x, y = get_gaussian_at_alpha()
xs.append(x)
ys.append(y)
return np.array(xs), np.array(ys)
def high_d_gaussians(d, var, n):
# Choose random direction.
v = np.random.multivariate_normal(np.zeros(d), np.eye(d))
v = v / np.linalg.norm(v)
# Choose random perpendicular direction.
perp = np.random.multivariate_normal(np.zeros(d), np.eye(d))
perp = perp - np.dot(perp, v) * v
perp = perp / np.linalg.norm(perp)
assert(abs(np.dot(perp, v)) < 1e-8)
assert(abs(np.linalg.norm(v) - 1) < 1e-8)
assert(abs(np.linalg.norm(perp) - 1) < 1e-8)
s_a = 2 * perp - v
s_b = -2 * perp + v
t_a = -2 * perp - v
t_b = 2 * perp + v
return lambda: make_moving_gaussians([s_a, s_b], [var, var], [t_a, t_b], [var, var], n)
# MNIST datasets.
def get_preprocessed_mnist():
(train_x, train_y), (test_x, test_y) = mnist.load_data()
train_x, test_x = train_x / 255.0, test_x / 255.0
train_x, train_y = shuffle(train_x, train_y)
train_x = np.expand_dims(np.array(train_x), axis=-1)
test_x = np.expand_dims(np.array(test_x), axis=-1)
return (train_x, train_y), (test_x, test_y)
def sample_rotate_images(xs, start_angle, end_angle):
new_xs = []
num_points = xs.shape[0]
for i in range(num_points):
if start_angle == end_angle:
angle = start_angle
else:
angle = np.random.uniform(low=start_angle, high=end_angle)
img = ndimage.rotate(xs[i], angle, reshape=False)
new_xs.append(img)
return np.array(new_xs)
def continually_rotate_images(xs, start_angle, end_angle):
new_xs = []
num_points = xs.shape[0]
for i in range(num_points):
angle = float(end_angle - start_angle) / num_points * i + start_angle
img = ndimage.rotate(xs[i], angle, reshape=False)
new_xs.append(img)
return np.array(new_xs)
def _transition_rotation_dataset(train_x, train_y, test_x, test_y,
source_angles, target_angles, inter_func,
src_train_end, src_val_end, inter_end, target_end):
assert(target_end <= train_x.shape[0])
assert(train_x.shape[0] == train_y.shape[0])
src_tr_x, src_tr_y = train_x[:src_train_end], train_y[:src_train_end]
src_tr_x = sample_rotate_images(src_tr_x, source_angles[0], source_angles[1])
src_val_x, src_val_y = train_x[src_train_end:src_val_end], train_y[src_train_end:src_val_end]
src_val_x = sample_rotate_images(src_val_x, source_angles[0], source_angles[1])
tmp_inter_x, inter_y = train_x[src_val_end:inter_end], train_y[src_val_end:inter_end]
inter_x = inter_func(tmp_inter_x)
dir_inter_x = sample_rotate_images(tmp_inter_x, target_angles[0], target_angles[1])
dir_inter_y = np.array(inter_y)
assert(inter_x.shape == dir_inter_x.shape)
trg_val_x, trg_val_y = train_x[inter_end:target_end], train_y[inter_end:target_end]
trg_val_x = sample_rotate_images(trg_val_x, target_angles[0], target_angles[1])
trg_test_x, trg_test_y = test_x, test_y
trg_test_x = sample_rotate_images(trg_test_x, target_angles[0], target_angles[1])
return (src_tr_x, src_tr_y, src_val_x, src_val_y, inter_x, inter_y,
dir_inter_x, dir_inter_y, trg_val_x, trg_val_y, trg_test_x, trg_test_y)
def dial_rotation_proportions(xs, source_angles, target_angles):
N = xs.shape[0]
new_xs = []
rotate_ps = np.arange(N) / float(N - 1)
is_target = np.random.binomial(n=1, p=rotate_ps)
assert(is_target.shape == (N,))
for i in range(N):
if is_target[i]:
angle = np.random.uniform(low=target_angles[0], high=target_angles[1])
else:
angle = np.random.uniform(low=source_angles[0], high=source_angles[1])
cur_x = ndimage.rotate(xs[i], angle, reshape=False)
new_xs.append(cur_x)
return np.array(new_xs)
def dial_proportions_rotated_dataset(train_x, train_y, test_x, test_y,
source_angles, target_angles,
src_train_end, src_val_end, inter_end, target_end):
inter_func = lambda x: dial_rotation_proportions(
x, source_angles, target_angles)
return _transition_rotation_dataset(
train_x, train_y, test_x, test_y, source_angles, target_angles,
inter_func, src_train_end, src_val_end, inter_end, target_end)
def make_rotated_dataset(train_x, train_y, test_x, test_y,
source_angles, inter_angles, target_angles,
src_train_end, src_val_end, inter_end, target_end):
inter_func = lambda x: continually_rotate_images(x, inter_angles[0], inter_angles[1])
return _transition_rotation_dataset(
train_x, train_y, test_x, test_y, source_angles, target_angles,
inter_func, src_train_end, src_val_end, inter_end, target_end)
def make_population_rotated_dataset(xs, ys, delta_angle, num_angles):
images, labels = [], []
for i in range(num_angles):
cur_angle = i * delta_angle
cur_images = sample_rotate_images(xs, cur_angle, cur_angle)
images.append(cur_images)
labels.append(ys)
images = np.concatenate(images, axis=0)
labels = np.concatenate(labels, axis=0)
assert images.shape[1:] == xs.shape[1:]
assert labels.shape[1:] == ys.shape[1:]
return images, labels
def make_rotated_dataset_continuous(dataset, start_angle, end_angle, num_points):
images, labels = [], []
(train_x, train_y), (_, _) = dataset.load_data()
train_x, train_y = shuffle(train_x, train_y)
train_x = train_x / 255.0
assert(num_points < train_x.shape[0])
indices = np.random.choice(train_x.shape[0], size=num_points, replace=False)
for i in range(num_points):
angle = float(end_angle - start_angle) / num_points * i + start_angle
idx = indices[i]
img = ndimage.rotate(train_x[idx], angle, reshape=False)
images.append(img)
labels.append(train_y[idx])
return np.array(images), np.array(labels)
def make_rotated_mnist(start_angle, end_angle, num_points, normalize=False):
Xs, Ys = make_rotated_dataset(mnist, start_angle, end_angle, num_points)
if normalize:
Xs = np.reshape(Xs, (Xs.shape[0], -1))
old_mean = np.mean(Xs)
Xs = sklearn.preprocessing.normalize(Xs, norm='l2')
new_mean = np.mean(Xs)
Xs = Xs * (old_mean / new_mean)
return np.expand_dims(np.array(Xs), axis=-1), Ys
def make_rotated_cifar10(start_angle, end_angle, num_points):
return make_rotated_dataset(cifar10, start_angle, end_angle, num_points)
def make_mnist():
(train_x, train_y), (_, _) = mnist.load_data()
train_x = train_x / 255.0
return np.expand_dims(train_x, axis=-1), train_y
def make_mnist_svhn_dataset(num_examples, mnist_start_prob, mnist_end_prob):
data = scipy.io.loadmat('mnist32_train.mat')
mnist_x = data['X']
mnist_y = data['y']
mnist_y = np.squeeze(mnist_y)
mnist_x, mnist_y = shuffle(mnist_x, mnist_y)
data = scipy.io.loadmat('svhn_train_32x32.mat')
svhn_x = data['X']
svhn_x = svhn_x / 255.0
svhn_x = np.transpose(svhn_x, [3, 0, 1, 2])
svhn_y = data['y']
svhn_y = np.squeeze(svhn_y)
svhn_y[(svhn_y == 10)] = 0
svhn_x, svhn_y = shuffle(svhn_x, svhn_y)
delta = float(mnist_end_prob - mnist_start_prob) / (num_examples - 1)
mnist_probs = np.array([mnist_start_prob + delta * i for i in range(num_examples)])
# assert((np.all(mnist_end_prob >= mnist_probs) and np.all(mnist_probs >= mnist_start_prob)) or
# (np.all(mnist_start_prob >= mnist_probs) and np.all(mnist_probs >= mnist_end_prob)))
domains = np.random.binomial(n=1, p=mnist_probs)
assert(domains.shape == (num_examples,))
mnist_indices = np.arange(num_examples)[domains == 1]
svhn_indices = np.arange(num_examples)[domains == 0]
assert(svhn_x.shape[1:] == mnist_x.shape[1:])
xs = np.empty((num_examples,) + tuple(svhn_x.shape[1:]), dtype='float32')
ys = np.empty((num_examples,), dtype='int32')
xs[mnist_indices] = mnist_x[:mnist_indices.size]
xs[svhn_indices] = svhn_x[:svhn_indices.size]
ys[mnist_indices] = mnist_y[:mnist_indices.size]
ys[svhn_indices] = svhn_y[:svhn_indices.size]
return xs, ys
# Portraits dataset.
def save_data(data_dir='dataset_32x32', save_file='dataset_32x32.mat', target_size=(32, 32)):
Xs, Ys = [], []
datagen = ImageDataGenerator(rescale=1./255)
data_generator = datagen.flow_from_directory(
data_dir, shuffle=False, target_size=target_size, **image_options)
while True:
next_x, next_y = data_generator.next()
Xs.append(next_x)
Ys.append(next_y)
if data_generator.batch_index == 0:
break
Xs = np.concatenate(Xs)
Ys = np.concatenate(Ys)
filenames = [f[2:] for f in data_generator.filenames]
assert(len(set(filenames)) == len(filenames))
filenames_idx = list(zip(filenames, range(len(filenames))))
filenames_idx = [(f, i) for f, i in zip(filenames, range(len(filenames)))]
# if f[5:8] == 'Cal' or f[5:8] == 'cal']
indices = [i for f, i in sorted(filenames_idx)]
genders = np.array([f[:1] for f in data_generator.filenames])[indices]
binary_genders = (genders == 'F')
pickle.dump(binary_genders, open('portraits_gender_stats', "wb"))
print("computed gender stats")
# gender_stats = utils.rolling_average(binary_genders, 500)
# print(filenames)
# sort_indices = np.argsort(filenames)
# We need to sort only by year, and not have correlation with state.
# print state stats? print gender stats? print school stats?
# E.g. if this changes a lot by year, then we might want to do some grouping.
# Maybe print out number per year, and then we can decide on a grouping? Or algorithmically decide?
Xs = Xs[indices]
Ys = Ys[indices]
scipy.io.savemat('./' + save_file, mdict={'Xs': Xs, 'Ys': Ys})
def load_portraits_data(load_file='dataset_32x32.mat'):
data = scipy.io.loadmat('./' + load_file)
return data['Xs'], data['Ys'][0]
def make_portraits_data(n_src_tr, n_src_val, n_inter, n_target_unsup, n_trg_val, n_trg_tst,
load_file='dataset_32x32.mat'):
xs, ys = load_portraits_data(load_file)
src_end = n_src_tr + n_src_val
inter_end = src_end + n_inter
trg_end = inter_end + n_trg_val + n_trg_tst
src_x, src_y = shuffle(xs[:src_end], ys[:src_end])
trg_x, trg_y = shuffle(xs[inter_end:trg_end], ys[inter_end:trg_end])
[src_tr_x, src_val_x] = split_sizes(src_x, [n_src_tr])
[src_tr_y, src_val_y] = split_sizes(src_y, [n_src_tr])
[trg_val_x, trg_test_x] = split_sizes(trg_x, [n_trg_val])
[trg_val_y, trg_test_y] = split_sizes(trg_y, [n_trg_val])
inter_x, inter_y = xs[src_end:inter_end], ys[src_end:inter_end]
dir_inter_x, dir_inter_y = inter_x[-n_target_unsup:], inter_y[-n_target_unsup:]
return (src_tr_x, src_tr_y, src_val_x, src_val_y, inter_x, inter_y,
dir_inter_x, dir_inter_y, trg_val_x, trg_val_y, trg_test_x, trg_test_y)
def rotated_mnist_60_data_func():
(train_x, train_y), (test_x, test_y) = get_preprocessed_mnist()
return make_rotated_dataset(
train_x, train_y, test_x, test_y, [0.0, 5.0], [5.0, 60.0], [55.0, 60.0],
5000, 6000, 48000, 50000)
def rotated_mnist_60_dialing_ratios_data_func():
(train_x, train_y), (test_x, test_y) = get_preprocessed_mnist()
return dial_proportions_rotated_dataset(
train_x, train_y, test_x, test_y, [0.0, 5.0], [55.0, 60.0],
5000, 6000, 48000, 50000)
def portraits_data_func():
return make_portraits_data(1000, 1000, 14000, 2000, 1000, 1000)
def portraits_data_func_more():
return make_portraits_data(1000, 1000, 20000, 2000, 1000, 1000)
def portraits_64_data_func():
return make_portraits_data(1000, 1000, 14000, 2000, 1000, 1000, load_file='dataset_64x64.mat')
def gaussian_data_func(d):
return make_high_d_gaussian_data(
d=d, min_var=0.05, max_var=0.1,
source_alphas=[0.0, 0.0], inter_alphas=[0.0, 1.0], target_alphas=[1.0, 1.0],
n_src_tr=500, n_src_val=1000, n_inter=5000, n_trg_val=1000, n_trg_tst=1000)