-
-
Notifications
You must be signed in to change notification settings - Fork 215
/
Copy pathtext_recognizer.py
executable file
·78 lines (63 loc) · 2.08 KB
/
text_recognizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
import itertools
import sys
import numpy as np
from keras.models import load_model
from PIL import Image # python -m pip install --upgrade Pillow # WTF
weight_file = None # use model weights
# weight_file = 'best_weights.h5'
# weight_file = 'current_weights.h5'
# weight_file = 'weights_ascii.h5' # learned on noisy data
weight_file = 'weights_ascii_easy.h5' # no freckles
# weight_file = 'weights_ascii_clean.h5' # pure text, no rotation etc
chars = u'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZäöüÄÖÜß0123456789!@#$%^&*()[]{}-_=+\\|"\'`;:/.,?><~ '
global model
model=None
def init_model(model_file="current_model.h5"):
global model
model = load_model(model_file)
model.summary()
if weight_file:
model.load_weights(weight_file, reshape=True, by_name=True)
def predict_tensor(tensor):
if len(tensor.shape) == 2:
tensor = tensor.transpose((1, 0))
tensor = tensor[np.newaxis, :, :, np.newaxis]
elif len(tensor.shape) == 3:
tensor = tensor.transpose((2, 1, 0)) # 4*w*h
tensor = tensor[:, :, :, np.newaxis]
print(tensor.shape)
if not model: init_model()
prediction = model.predict([tensor], batch_size=1, verbose=1)
result = decode_results(prediction)
return result
def decode_labels(labels):
ret = []
for c in labels:
# ret += chr(c)
if c == len(chars):
ret.append("")
else:
ret.append(chars[c])
return "".join(ret)
# could be extended to beam search with a dictionary and language model.
def decode_results(prediction):
ret = []
for j in range(prediction.shape[0]):
out_best = list(np.argmax(prediction[j, 2:], 1))
out_best = [k for k, g in itertools.groupby(out_best)]
outstr = decode_labels(out_best)
ret.append(outstr)
return ret
if __name__ == '__main__':
np.random.seed(128)
if (len(sys.argv) > 1):
test_image = sys.argv[1]
else:
test_image = "test_image.png"
image = Image.open(test_image)
# image = image.transpose(Image.FLIP_TOP_BOTTOM)
tensor = np.array(image) / 255.0 # RGBA: h*w*4
words = predict_tensor(tensor)
print(words)