forked from keyonvafa/tbip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtbip_with_gamma.py
1063 lines (964 loc) · 46.6 KB
/
tbip_with_gamma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Learn ideal points with the text-based ideal point model (TBIP).
Updates from the original code release:
1. This code supports using Gamma variational families for the document
latent variables (theta) and the objective topic variables (beta). When
holding the other variational families fixed, the optimal variational
distributions are available for these parameters in closed-form, using
Coordinate-Ascent Variational Inference (CAVI). When CAVI is being used
to optimize document and objective topic variational families, the other
variational parameters are optimized with SGD. As a result, the
optimization procedure converges more quickly. Moreover, the learned
topics are more interpretable, and they do not need to be initialized with
Poisson factorization.
2. Rather than using pre-determined author weights to normalize each author's
word counts by their verbosity, here we learn the weights, which was
shown to improve performance. These weights are referred to as
`author_verbosity`.
3. This code is in Tensorflow 2, which should make it easier to prototype and
run than Tensorflow 1.
The directory `data/{data_name}/clean/` should have the following four files:
1. `counts.npz`: a [num_documents, num_words] sparse matrix containing the
word counts for each document.
2. `author_indices.npy`: a [num_documents] vector where each entry is an
integer in the set {0, 1, ..., num_authors - 1}, indicating the author of
the corresponding document in `counts.npz`.
3. `vocabulary.txt`: a [num_words]-length file where each line is a string
denoting the corresponding word in the vocabulary.
4. `author_map.txt`: a [num_authors]-length file where each line is a string
denoting the name of an author in the corpus.
For more details about the base model, refer to our paper [1]. For more details
about the CAVI updates, refer to [2].
#### References
[1]: Keyon Vafa, Suresh Naidu, David Blei. Text-Based Ideal Points. In
_Association for Computational Linguistics_, 2020.
https://www.aclweb.org/anthology/2020.acl-main.475/
[2]: Prem Gopalan, Jake Hofman, David Blei. Scalable Recommendation with
Hierarchical Poisson Factorization. In _Conference on Uncertainty in
Artifical Intelligence_, 2015. https://arxiv.org/abs/1311.1704
"""
import os
import time
from absl import app
from absl import flags
import numpy as np
import scipy.sparse as sparse
import tensorflow as tf
import tensorflow_probability as tfp
flags.DEFINE_float("learning_rate",
default=0.01,
help="Adam learning rate.")
flags.DEFINE_integer("num_epochs",
default=10000,
help="Number of training steps to run.")
flags.DEFINE_integer("num_topics",
default=50,
help="Number of topics.")
flags.DEFINE_integer("batch_size",
default=512,
help="Batch size.")
flags.DEFINE_integer("num_samples",
default=1,
help="Number of samples to use for ELBO approximation.")
flags.DEFINE_enum("counts_transformation",
default="nothing",
enum_values=["nothing", "log"],
help="Transformation used on counts data.")
flags.DEFINE_enum("positive_variational_family",
default="gamma",
enum_values=["gamma", "lognormal"],
help="Variational family used for document intensities "
"(theta) and objective topics (beta).")
flags.DEFINE_boolean("cavi",
default=True,
help="Whether to use coordinate-ascent variational "
"inference for the positive random variables (theta "
"and beta).")
flags.DEFINE_boolean("pre_initialize_parameters",
default=False,
help="Whether to use pre-initialized document and topic "
"intensities (with Poisson factorization).")
flags.DEFINE_string("data",
default="senate-speeches-114",
help="Data source being used.")
flags.DEFINE_integer("save_every",
default=20,
help="Number of epochs after which to save and log")
flags.DEFINE_integer("seed",
default=123,
help="Random seed to be used.")
flags.DEFINE_string("checkpoint_name",
default="tmp",
help="Name to be used for saving results.")
flags.DEFINE_boolean("load_checkpoint",
default=True,
help="Whether to load checkpoint (only if it exists).")
FLAGS = flags.FLAGS
def build_input_pipeline(data_dir,
batch_size,
random_state,
counts_transformation="nothing"):
"""Load data and build iterator for minibatches.
Args:
data_dir: The directory where the data is located. There must be four
files inside the rep: `counts.npz`, `author_indices.npy`,
`author_map.txt`, and `vocabulary.txt`.
batch_size: The batch size to use for training.
random_state: A NumPy `RandomState` object, used to shuffle the data.
counts_transformation: A string indicating how to transform the counts.
One of "nothing" or "log".
"""
counts = sparse.load_npz(os.path.join(data_dir, "counts.npz"))
num_documents, num_words = counts.shape
author_indices = np.load(
os.path.join(data_dir, "author_indices.npy")).astype(np.int32)
author_map = np.loadtxt(os.path.join(data_dir, "author_map.txt"),
dtype=str,
delimiter="\n")
documents = random_state.permutation(num_documents)
shuffled_author_indices = author_indices[documents]
shuffled_counts = counts[documents]
if counts_transformation == "nothing":
count_values = shuffled_counts.data
elif counts_transformation == "log":
count_values = np.round(np.log(1 + shuffled_counts.data))
else:
raise ValueError("Unrecognized counts transformation.")
shuffled_counts = tf.SparseTensor(
indices=np.array(shuffled_counts.nonzero()).T,
values=count_values,
dense_shape=shuffled_counts.shape)
dataset = tf.data.Dataset.from_tensor_slices(
({"document_indices": documents,
"author_indices": shuffled_author_indices}, shuffled_counts))
dataset = dataset.shuffle(1000, reshuffle_each_iteration=True).batch(
batch_size)
vocabulary = np.loadtxt(os.path.join(data_dir, "vocabulary.txt"),
dtype=str,
delimiter="\n",
comments="<!-")
return dataset, vocabulary, author_map, num_documents, num_words
class VariationalFamily(tf.keras.layers.Layer):
"""Object to represent variational parameters."""
def __init__(self,
family,
shape,
fitted_shape=None,
fitted_rate=None,
cavi=False):
"""Initialize variational family.
Args:
family: A string repesenting the variational family, one of "gamma",
"lognormal", or "normal".
shape: A list denoting the shape of the variational parameters.
fitted_shape: The fitted shape parameter from Poisson Factorization, used
only if pre-initializing with Poisson Factoriation.
fitted_rate: The fitted rate parameter from Poisson Factorization.
cavi: Whether the variational parameters will be maximized with CAVI
rather than with gradient descent.
"""
super(VariationalFamily, self).__init__()
if family in ['normal', 'lognormal']:
if fitted_shape is None or fitted_rate is None:
self.location = tf.Variable(
tf.keras.initializers.GlorotUniform()(shape=shape))
else:
self.location = tf.Variable(np.log(fitted_shape / fitted_rate))
self.scale = tfp.util.TransformedVariable(
tf.ones(shape),
bijector=tfp.bijectors.Softplus())
elif family == 'gamma':
if fitted_shape is not None:
if cavi:
# If we're doing CAVI, the shape doesn't need to be a transformed
# variable because it's optimized directly rather than with gradient
# descent.
self.shape = tf.Variable(fitted_shape)
else:
self.shape = tfp.util.TransformedVariable(
fitted_shape,
bijector=tfp.bijectors.Softplus())
else:
if cavi:
self.shape = tf.Variable(
tf.exp(0.5 * tf.keras.initializers.RandomNormal()(shape=shape)))
else:
self.shape = tfp.util.TransformedVariable(
tf.ones(shape),
bijector=tfp.bijectors.Softplus())
if fitted_rate is not None:
if cavi:
self.rate = tf.Variable(fitted_rate)
else:
self.rate = tfp.util.TransformedVariable(
fitted_rate,
bijector=tfp.bijectors.Softplus())
else:
if cavi:
self.rate = tf.Variable(
tf.exp(0.5 * tf.keras.initializers.RandomNormal()(shape=shape)))
else:
self.rate = tfp.util.TransformedVariable(
tf.ones(shape),
bijector=tfp.bijectors.Softplus())
if family == 'normal':
self.distribution = tfp.distributions.Normal(loc=self.location,
scale=self.scale)
self.prior = tfp.distributions.Normal(loc=0., scale=1.)
elif family == 'lognormal':
self.distribution = tfp.distributions.LogNormal(loc=self.location,
scale=self.scale)
self.prior = tfp.distributions.Gamma(concentration=0.3, rate=0.3)
elif family == 'gamma':
self.distribution = tfp.distributions.Gamma(concentration=self.shape,
rate=self.rate)
self.prior = tfp.distributions.Gamma(concentration=0.3, rate=0.3)
else:
raise ValueError("Unrecognized variational family.")
# NOTE: tf.keras requires formally recognizing TFP variables in order to
# optimize them. See: https://github.com/tensorflow/probability/issues/946
self.recognized_variables = self.distribution.variables
def get_log_prior(self, samples):
"""Compute log prior of samples."""
# Sum all but first axis.
log_prior = tf.reduce_sum(self.prior.log_prob(samples),
axis=tuple(range(1, len(samples.shape))))
return log_prior
def get_entropy(self, samples):
"""Compute entropy of samples from variational distribution."""
# Sum all but first axis.
entropy = -tf.reduce_sum(self.distribution.log_prob(samples),
axis=tuple(range(1, len(samples.shape))))
return entropy
def sample(self, num_samples, seed=None):
"""Sample from variational family using reparameterization."""
seed, sample_seed = tfp.random.split_seed(seed)
return self.distribution.sample(num_samples, seed=sample_seed), seed
class TBIP(tf.keras.Model):
"""Tensorflow implementation of the TBIP model."""
def __init__(self,
positive_variational_family,
num_documents,
num_topics,
num_words,
num_authors,
num_samples,
cavi=False,
fitted_document_shape=None,
fitted_document_rate=None,
fitted_objective_topic_shape=None,
fitted_objective_topic_rate=None,):
"""Initialize TBIP model.
Args:
positive_variational_family: A string denoting the variational family of
the positive latent variables (the document intensities `theta` and the
objective topic `beta`). Either "gamma" or "lognormal".
num_documents: The number of documents in the corpus.
num_topics: The number of topics used for the model.
num_words: The number of words in the vocabulary.
num_authors: The number of authors in the corpus.
num_samples: The number of Monte-Carlo samples to use to approximate the
ELBO.
cavi: Whether to perform CAVI updates for the positive variational
variables (can only be used if a Gamma variational family is used).
fitted_document_shape: The fitted document shape parameter from Poisson
Factorization, used only if pre-initializing with Poisson Factoriation.
fitted_document_rate: The fitted document rate parameter from Poisson
Factorization.
fitted_objective_topic_shape: The fitted objective topic shape parameter
from Poisson Factorization.
fitted_objective_topic_rate: The fitted objective topic rate parameter
from Poisson Factorization.
"""
super(TBIP, self).__init__()
self.positive_variational_family = positive_variational_family
self.num_documents = num_documents
self.document_distribution = VariationalFamily(
positive_variational_family,
[num_documents, num_topics],
fitted_shape=fitted_document_shape,
fitted_rate=fitted_document_rate,
cavi=cavi,)
self.objective_topic_distribution = VariationalFamily(
positive_variational_family,
[num_topics, num_words],
fitted_shape=fitted_objective_topic_shape,
fitted_rate=fitted_objective_topic_rate,
cavi=cavi,)
self.ideological_topic_distribution = VariationalFamily(
'normal',
[num_topics, num_words],)
self.ideal_point_distribution = VariationalFamily(
'normal',
[num_authors],)
self.author_verbosity_distribution = VariationalFamily(
'normal',
shape=[num_authors],)
self.num_samples = num_samples
self.cavi = cavi
def get_log_prior(self,
document_samples,
objective_topic_samples,
ideological_topic_samples,
ideal_point_samples,
author_verbosity_samples,):
"""Compute log prior of samples.
Args:
document_samples: Samples from the document intensity variational
distribution. A tensor with shape [num_samples, num_documents,
num_topics].
objective_topic_samples: Samples from the objective topic variational
distribution. A tensor with shape [num_samples, num_topics, num_words].
ideological_topic_samples: Samples from the ideological topic variational
distribution. A tensor with shape [num_samples, num_topics, num_words].
ideal_point_samples: Samples from the ideal point variational
distribution. A tensor with shape [num_samples, num_authors].
author_verbosity_samples: Samples from the author verbosity variational
distribution. A tensor with shape [num_samples, num_authors].
Returns:
log_prior: Monte-Carlo estimate of the log prior. A tensor with shape
[num_samples].
"""
document_log_prior = self.document_distribution.get_log_prior(
document_samples)
objective_topic_log_prior = (
self.objective_topic_distribution.get_log_prior(objective_topic_samples))
ideological_topic_log_prior = (
self.ideological_topic_distribution.get_log_prior(
ideological_topic_samples))
ideal_point_log_prior = self.ideal_point_distribution.get_log_prior(
ideal_point_samples)
author_verbosity_log_prior = (
self.author_verbosity_distribution.get_log_prior(
author_verbosity_samples))
log_prior = (document_log_prior +
objective_topic_log_prior +
ideological_topic_log_prior +
ideal_point_log_prior +
author_verbosity_log_prior)
return log_prior
def get_entropy(self,
document_samples,
objective_topic_samples,
ideological_topic_samples,
ideal_point_samples,
author_verbosity_samples,):
"""Compute entropy of samples from variational family.
Args:
document_samples: Samples from the document intensity variational
distribution. A tensor with shape [num_samples, num_documents,
num_topics].
objective_topic_samples: Samples from the objective topic variational
distribution. A tensor with shape [num_samples, num_topics, num_words].
ideological_topic_samples: Samples from the ideological topic variational
distribution. A tensor with shape [num_samples, num_topics, num_words].
ideal_point_samples: Samples from the ideal point variational
distribution. A tensor with shape [num_samples, num_authors].
author_verbosity_samples: Samples from the author verbosity variational
distribution. A tensor with shape [num_samples, num_authors].
Returns:
entropy: Monte-Carlo estimate of the entropy. A tensor with shape
[num_samples].
"""
document_entropy = self.document_distribution.get_entropy(
document_samples)
objective_topic_entropy = (
self.objective_topic_distribution.get_entropy(objective_topic_samples))
ideological_topic_entropy = (
self.ideological_topic_distribution.get_entropy(
ideological_topic_samples))
ideal_point_entropy = self.ideal_point_distribution.get_entropy(
ideal_point_samples)
author_verbosity_entropy = self.author_verbosity_distribution.get_entropy(
author_verbosity_samples)
entropy = (document_entropy +
objective_topic_entropy +
ideological_topic_entropy +
ideal_point_entropy +
author_verbosity_entropy)
return entropy
def get_samples(self, seed=None):
"""Get samples from variational families."""
document_samples, seed = self.document_distribution.sample(
self.num_samples, seed=seed)
objective_topic_samples, seed = self.objective_topic_distribution.sample(
self.num_samples, seed=seed)
ideological_topic_samples, seed = (
self.ideological_topic_distribution.sample(self.num_samples, seed=seed))
ideal_point_samples, seed = self.ideal_point_distribution.sample(
self.num_samples, seed=seed)
author_verbosity_samples, seed = self.author_verbosity_distribution.sample(
self.num_samples, seed=seed)
samples = [document_samples, objective_topic_samples,
ideological_topic_samples, ideal_point_samples,
author_verbosity_samples]
return samples, seed
def get_rate_log_prior_entropy(self,
document_indices,
author_indices,
seed=None):
"""Compute Monte-Carlo estimates of ELBO terms.
Args:
document_indices: Indices of documents in the batch. A tensor with shape
[batch_size].
author_indices: Indices of authors in the batch. A tensor with shape
[batch_size].
seed: Random seed.
Returns:
rate: Monte-Carlo estimate of the rate. A tensor with shape [num_samples,
batch_size, num_words].
log_prior: Monte-Carlo estimate of the log prior. A tensor with shape
[num_samples].
entropy: Monte-Carlo estimate of the entropy. A tensor with shape
[num_samples].
seed: Updated random seed.
"""
((document_samples, objective_topic_samples,
ideological_topic_samples, ideal_point_samples,
author_verbosity_samples),
seed) = self.get_samples(seed)
log_prior = self.get_log_prior(document_samples,
objective_topic_samples,
ideological_topic_samples,
ideal_point_samples,
author_verbosity_samples,)
entropy = self.get_entropy(document_samples,
objective_topic_samples,
ideological_topic_samples,
ideal_point_samples,
author_verbosity_samples,)
# Compute rate for each document in batch.
selected_document_samples = tf.gather(document_samples,
document_indices,
axis=1)
selected_ideal_points = tf.gather(ideal_point_samples,
author_indices,
axis=1)
selected_author_verbosities = tf.gather(author_verbosity_samples,
author_indices,
axis=1)
# Compute ideological term, adding the per-author verbosity scaling.
selected_ideological_topic_samples = tf.exp(
selected_ideal_points[:, :, tf.newaxis, tf.newaxis] *
ideological_topic_samples[:, tf.newaxis, :, :] + (
selected_author_verbosities[:, :, tf.newaxis, tf.newaxis]))
rate = tf.reduce_sum(
selected_document_samples[:, :, :, tf.newaxis] *
objective_topic_samples[:, tf.newaxis, :, :] *
selected_ideological_topic_samples[:, :, :, :],
axis=2)
return rate, log_prior, entropy, seed
def get_ideological_term_geometric_mean(self, author_indices):
"""Compute variational geometric mean of ideological term for CAVI.
More specifically, we compute:
exp(E[log(exp(eta_kv * x_{a_d} + w_{a_d}))]) =
exp(E[eta_kv] * E[x_{a_d}] + E[w_{a_d}]),
where a_d is the author of document d and w_{a_d} is the author verbosity.
The geometric mean is used directly for the computation of the auxiliary
terms. The CAVI updates for theta and beta require the actual mean of the
ideological term, which cannot be computed in closed form, so we
approximate it with the geometric mean.
Args:
author_indices: Indices of authors in the batch. A tensor with shape
[batch_size].
Returns:
geometric_mean: Geometric mean of the ideological term. A tensor with
shape [batch_size, num_topics, num_words].
"""
ideal_point_loc = tf.gather(self.ideal_point_distribution.location,
author_indices,
axis=0)
author_verbosity_loc = tf.gather(
self.author_verbosity_distribution.location,
author_indices,
axis=0)
expected_ideological_term = tf.exp(
self.ideological_topic_distribution.location[tf.newaxis, :, :] *
ideal_point_loc[:, tf.newaxis, tf.newaxis] +
author_verbosity_loc[:, tf.newaxis, tf.newaxis])
return expected_ideological_term
def get_cavi_auxiliary_proportions(self,
document_indices,
expected_ideological_term):
"""Perform CAVI update for auxiliary proportion variables.
Args:
document_indices: Indices of documents in the batch. A tensor with shape
[batch_size].
expected_ideological_term: Geometric mean of the ideological term. A
tensor with shape [batch_size, num_topics, num_words].
Returns:
auxiliary_proportions: The updated auxiliary proportions. A tensor with
shape [batch_size, num_topics, num_words]. The tensor is normalized
across topics, so it can be interpreted as the proportion of each
topic belong to each word.
"""
document_shape = tf.gather(self.document_distribution.shape,
document_indices,
axis=0)
document_rate = tf.gather(self.document_distribution.rate,
document_indices,
axis=0)
document_geometric_mean = tf.exp(
tf.math.digamma(document_shape)) / document_rate
objective_topic_geometric_mean = tf.exp(
tf.math.digamma(self.objective_topic_distribution.shape)
) / self.objective_topic_distribution.rate
auxiliary_numerator = (document_geometric_mean[:, :, tf.newaxis] *
objective_topic_geometric_mean[tf.newaxis, :, :] *
expected_ideological_term)
auxiliary_proportions = auxiliary_numerator / tf.reduce_sum(
auxiliary_numerator, axis=1)[:, tf.newaxis, :]
return auxiliary_proportions
def get_cavi_document_parameters(self,
counts,
expected_ideological_term,
auxiliary_proportions):
"""Perform CAVI update for document parameters.
The optimal update requires the variational expectation of the ideological
term:
E[exp(eta_kv * x_{a_d} + w_{a_d})],
which is intractable. Instead, we approximate it with the geometric mean.
Args:
counts: Counts of words in documents. A tensor with shape
[batch_size, num_words].
expected_ideological_term: Geometric mean of the ideological term. A
tensor with shape [batch_size, num_topics, num_words].
auxiliary_proportions: The auxiliary proportions. A tensor with shape
[batch_size, num_topics, num_words].
Returns:
document_shape: The updated document shape. A tensor with shape
[batch_size, num_topics].
document_rate: The updated document rate. A tensor with shape
[batch_size, num_topics].
"""
updated_document_shape = 0.3 + tf.reduce_sum(
auxiliary_proportions * counts[:, tf.newaxis, :], axis=-1)
expected_objective_topic = (self.objective_topic_distribution.shape /
self.objective_topic_distribution.rate)
updated_document_rate = 0.3 + tf.reduce_sum(
expected_objective_topic[tf.newaxis] * expected_ideological_term, -1)
return updated_document_shape, updated_document_rate
def get_cavi_objective_topic_parameters(self,
counts,
expected_ideological_term,
auxiliary_proportions,
document_shape,
document_rate):
"""Perform CAVI update for objective topic parameters.
The optimal update requires the variational expectation of the ideological
term, which is intractable, so we approximate it with the geometric mean.
Args:
counts: Counts of words in documents. A tensor with shape
[batch_size, num_words].
expected_ideological_term: Geometric mean of the ideological term. A
tensor with shape [batch_size, num_topics, num_words].
auxiliary_proportions: The auxiliary proportions. A tensor with shape
[batch_size, num_topics, num_words].
document_shape: The variational document shape. A tensor with shape
[batch_size, num_topics].
document_rate: The variational document rate. A tensor with shape
[batch_size, num_topics].
Returns:
objective_topic_shape: The updated objective topic shape. A tensor with
shape [num_topics, num_words].
objective_topic_rate: The updated objective topic rate. A tensor with
shape [num_topics, num_words].
"""
batch_size = tf.shape(counts)[0]
# We scale to account for the fact that we're only using a minibatch to
# update the variational parameters of a global latent variable.
minibatch_scaling = tf.cast(self.num_documents / batch_size,
tf.dtypes.float32)
updated_objective_topic_shape = 0.3 + minibatch_scaling * tf.reduce_sum(
auxiliary_proportions * counts[:, tf.newaxis, :], axis=0)
expected_document = document_shape / document_rate
updated_objective_topic_rate = 0.3 + minibatch_scaling * tf.reduce_sum(
expected_document[..., tf.newaxis] * expected_ideological_term, 0)
return updated_objective_topic_shape, updated_objective_topic_rate
def perform_cavi_updates(self, inputs, outputs, step):
"""Perform CAVI updates for document intensities and objective topics.
Args:
inputs: A dictionary of input tensors.
outputs: A sparse tensor containing word counts.
step: The current training step.
"""
counts = tf.sparse.to_dense(outputs)
# The updates all use the geometric mean of the ideological term.
expected_ideological_term = self.get_ideological_term_geometric_mean(
inputs['author_indices'])
# An auxiliary latent variable is required to perform the CAVI updates for
# the document intensities and objective topics.
auxiliary_proportions = self.get_cavi_auxiliary_proportions(
inputs['document_indices'],
expected_ideological_term)
# Update the document intensities.
updated_document_shape, updated_document_rate = (
self.get_cavi_document_parameters(counts,
expected_ideological_term,
auxiliary_proportions))
# Update the objective topics.
updated_objective_topic_shape, updated_objective_topic_rate = (
self.get_cavi_objective_topic_parameters(counts,
expected_ideological_term,
auxiliary_proportions,
updated_document_shape,
updated_document_rate))
# The updates above were only for the documents in the batch, so we update
# the slice of the global latent variables corresponding to the documents
# in the batch.
global_document_shape = tf.tensor_scatter_nd_update(
self.document_distribution.shape,
inputs['document_indices'][:, tf.newaxis],
updated_document_shape)
global_document_rate = tf.tensor_scatter_nd_update(
self.document_distribution.rate,
inputs['document_indices'][:, tf.newaxis],
updated_document_rate)
# Because the objective topics are a global variable, stochastic
# variational inference calls for updating the variational parameters using
# a convex combination of the previous parameters and the updates. We set
# the step size to be a decreasing sequence that satisfies the Robbins-
# Monro condition.
step_size = tf.math.pow(tf.cast(step, tf.dtypes.float32) + 1, -0.7)
global_objective_topic_shape = (
step_size * updated_objective_topic_shape +
(1 - step_size) * self.objective_topic_distribution.shape)
global_objective_topic_rate = (
step_size * updated_objective_topic_rate +
(1 - step_size) * self.objective_topic_distribution.rate)
self.document_distribution.shape.assign(global_document_shape)
self.document_distribution.rate.assign(global_document_rate)
self.objective_topic_distribution.shape.assign(
global_objective_topic_shape)
self.objective_topic_distribution.rate.assign(global_objective_topic_rate)
def get_topic_means(self):
"""Get neutral and ideological topics from variational parameters.
For each (k,v), we want to evaluate E[beta_kv], E[beta_kv * exp(eta_kv)],
and E[beta_kv * exp(-eta_kv)], where the expectations are with respect to
the variational distributions. Like the paper, beta refers to the obective
topic and eta refers to the ideological topic.
The exact form depends on the variational family (gamma or lognormal).
Returns:
negative_mean: A tensor with shape [num_topics, num_words], denoting the
variational mean for the ideological topics with an ideal point of -1.
neutral_mean: A tensor with shape [num_topics, num_words] denoting the
variational mean for the neutral topics.
positive_mean: A tensor with shape [num_topics, num_words], denoting the
variational mean for the ideological topics with an ideal point of +1.
"""
ideological_topic_loc = self.ideological_topic_distribution.location
ideological_topic_scale = self.ideological_topic_distribution.scale
if self.positive_variational_family == 'gamma':
objective_topic_shape = self.objective_topic_distribution.shape
objective_topic_rate = self.objective_topic_distribution.rate
neutral_mean = objective_topic_shape / objective_topic_rate
positive_mean = ((objective_topic_shape / objective_topic_rate) * np.exp(
ideological_topic_loc +
(ideological_topic_scale ** 2) / 2))
negative_mean = ((objective_topic_shape / objective_topic_rate) * np.exp(
-ideological_topic_loc +
(ideological_topic_scale ** 2) / 2))
elif self.positive_variational_family == 'lognormal':
objective_topic_loc = self.objective_topic_distribution.location
objective_topic_scale = self.objective_topic_distribution.scale
neutral_mean = objective_topic_loc + objective_topic_scale ** 2 / 2
positive_mean = (objective_topic_loc +
ideological_topic_loc +
(objective_topic_scale ** 2 +
ideological_topic_scale ** 2) / 2)
negative_mean = (objective_topic_loc -
ideological_topic_loc +
(objective_topic_scale ** 2 +
ideological_topic_scale ** 2) / 2)
return negative_mean, neutral_mean, positive_mean
def call(self, inputs, seed):
"""Approximate terms in the ELBO with Monte-Carlo samples.
Args:
inputs: A dictionary of input tensors.
seed: A seed for the random number generator.
Returns:
rate: A tensor with shape [num_samples, batch_size, num_words],
corresponding to the sampled word count rates.
negative_log_prior: A scalar tensor, denoting the negative log prior.
negative_entropy: A scalar tensor, denoting the negative entropy.
seed: The updated seed.
"""
document_indices = inputs['document_indices']
author_indices = inputs['author_indices']
rate, log_prior, entropy, seed = self.get_rate_log_prior_entropy(
document_indices, author_indices, seed)
negative_log_prior = -tf.reduce_mean(log_prior)
negative_entropy = -tf.reduce_mean(entropy)
return rate, negative_log_prior, negative_entropy, seed
def print_topics(neutral_mean, negative_mean, positive_mean, vocabulary):
"""Get neutral and ideological topics to be used for Tensorboard.
Args:
neutral_mean: The mean of the neutral topics, a tensor with shape
[num_topics, num_words].
negative_mean: The mean of the negative topics, a tensor with shape
[num_topics, num_words].
positive_mean: The mean of the positive topics, a tensor with shape
[num_topics, num_words].
vocabulary: A list of the vocabulary with shape [num_words].
Returns:
topic_strings: A list of the negative, neutral, and positive topics.
"""
num_topics, _ = neutral_mean.shape
words_per_topic = 10
top_neutral_words = np.argsort(-neutral_mean, axis=1)
top_negative_words = np.argsort(-negative_mean, axis=1)
top_positive_words = np.argsort(-positive_mean, axis=1)
topic_strings = []
for topic_idx in range(num_topics):
neutral_start_string = "Neutral {}:".format(topic_idx)
neutral_row = [vocabulary[word] for word in
top_neutral_words[topic_idx, :words_per_topic]]
neutral_row_string = ", ".join(neutral_row)
neutral_string = " ".join([neutral_start_string, neutral_row_string])
positive_start_string = "Positive {}:".format(topic_idx)
positive_row = [vocabulary[word] for word in
top_positive_words[topic_idx, :words_per_topic]]
positive_row_string = ", ".join(positive_row)
positive_string = " ".join([positive_start_string, positive_row_string])
negative_start_string = "Negative {}:".format(topic_idx)
negative_row = [vocabulary[word] for word in
top_negative_words[topic_idx, :words_per_topic]]
negative_row_string = ", ".join(negative_row)
negative_string = " ".join([negative_start_string, negative_row_string])
topic_strings.append(" \n".join(
[negative_string, neutral_string, positive_string]))
return np.array(topic_strings)
def print_ideal_points(ideal_point_loc, author_map):
"""Print ideal point ordering for Tensorboard."""
return ", ".join(author_map[np.argsort(ideal_point_loc)])
def log_static_features(model, vocabulary, author_map, step):
"""Log static features to Tensorboard."""
negative_mean, neutral_mean, positive_mean = model.get_topic_means()
ideal_point_list = print_ideal_points(
model.ideal_point_distribution.location.numpy(),
author_map)
topics = print_topics(neutral_mean,
negative_mean,
positive_mean,
vocabulary)
tf.summary.text("ideal_points", ideal_point_list, step=step)
tf.summary.text("topics", topics, step=step)
# The parameters to log depend on the variational families.
if model.positive_variational_family == 'gamma':
tf.summary.histogram("params/document_shape",
model.document_distribution.shape,
step=step)
tf.summary.histogram("params/document_rate",
model.document_distribution.rate,
step=step)
tf.summary.histogram("params/objective_topic_shape",
model.objective_topic_distribution.shape,
step=step)
tf.summary.histogram("params/objective_topic_rate",
model.objective_topic_distribution.rate,
step=step)
else:
tf.summary.histogram("params/document_loc",
model.document_distribution.location,
step=step)
tf.summary.histogram("params/document_scale",
model.document_distribution.scale,
step=step)
tf.summary.histogram("params/objective_topic_loc",
model.objective_topic_distribution.location,
step=step)
tf.summary.histogram("params/objective_topic_scale",
model.objective_topic_distribution.scale,
step=step)
tf.summary.histogram("params/ideological_topic_loc",
model.ideological_topic_distribution.location,
step=step)
tf.summary.histogram("params/ideological_topic_scale",
model.ideological_topic_distribution.scale,
step=step)
tf.summary.histogram("params/ideal_point_loc",
model.ideal_point_distribution.location,
step=step)
tf.summary.histogram("params/ideal_point_scale",
model.ideal_point_distribution.scale,
step=step)
tf.summary.histogram("params/author_verbosity_loc",
model.author_verbosity_distribution.location,
step=step)
tf.summary.histogram("params/author_verbosity_scale",
model.author_verbosity_distribution.scale,
step=step)
@tf.function
def train_step(model, inputs, outputs, optim, seed, step=None):
"""Perform a single training step.
Args:
model: The TBIP model.
inputs: A dictionary of input tensors.
outputs: A sparse tensor containing word counts.
optim: An optimizer.
seed: The random seed.
step: The current step.
Returns:
total_loss: The total loss for the minibatch (the negative ELBO, sampled
with Monte-Carlo).
reconstruction_loss: The reconstruction loss (negative log-likelihood),
sampled for the minibatch.
log_prior_loss: The negative log prior.
entropy_loss: The negative entropy.
"""
if model.cavi:
# Perform CAVI updates.
model.perform_cavi_updates(inputs, outputs, step)
with tf.GradientTape() as tape:
predictions, log_prior_loss, entropy_loss, seed = model(inputs, seed)
count_distribution = tfp.distributions.Poisson(rate=predictions)
count_log_likelihood = count_distribution.log_prob(
tf.sparse.to_dense(outputs))
count_log_likelihood = tf.reduce_sum(count_log_likelihood, axis=[1, 2])
# Adjust for the fact that we're only using a minibatch.
batch_size = tf.shape(outputs)[0]
count_log_likelihood = count_log_likelihood * tf.dtypes.cast(
model.num_documents / batch_size, tf.float32)
reconstruction_loss = -count_log_likelihood
total_loss = tf.reduce_mean(reconstruction_loss +
log_prior_loss +
entropy_loss)
trainable_variables = tape.watched_variables()
if model.cavi:
# If we're doing CAVI, the first four parameters are the document and
# objective topic parameters, which should not be updated with gradients
# because they're updated with CAVI.
trainable_variables = trainable_variables[4:]
grads = tape.gradient(total_loss, trainable_variables)
optim.apply_gradients(zip(grads, trainable_variables))
return total_loss, reconstruction_loss, log_prior_loss, entropy_loss, seed
def main(argv):
del argv
# Initial random seed for parameter initialization.
tf.random.set_seed(FLAGS.seed)
random_state = np.random.RandomState(FLAGS.seed)
project_dir = os.path.abspath(os.path.join(os.path.dirname(__file__),
os.pardir))
source_dir = os.path.join(project_dir, "data/{}".format(FLAGS.data))
# As described in the docstring, the data directory must have the following
# files: counts.npz, author_indices.npy, vocabulary.txt, author_map.txt.
data_dir = os.path.join(source_dir, "clean")
save_dir = os.path.join(source_dir, "fits/{}".format(FLAGS.checkpoint_name))
if FLAGS.cavi:
if FLAGS.positive_variational_family != 'gamma':
raise ValueError("Can only do CAVI for gamma variational families.")
(dataset, vocabulary, author_map,
num_documents, num_words) = build_input_pipeline(
data_dir,
FLAGS.batch_size,
random_state,
FLAGS.counts_transformation)
num_authors = len(author_map)
fit_dir = os.path.join(source_dir, "pf-fits")
if FLAGS.pre_initialize_parameters:
fitted_document_shape = np.load(
os.path.join(fit_dir, "document_shape.npy")).astype(np.float32)
fitted_document_rate = np.load(
os.path.join(fit_dir, "document_rate.npy")).astype(np.float32)
fitted_topic_shape = np.load(
os.path.join(fit_dir, "topic_shape.npy")).astype(np.float32)
fitted_topic_rate = np.load(
os.path.join(fit_dir, "topic_rate.npy")).astype(np.float32)
else:
fitted_document_shape = None
fitted_document_rate = None
fitted_topic_shape = None
fitted_topic_rate = None
optim = tf.optimizers.Adam(learning_rate=FLAGS.learning_rate)
model = TBIP(FLAGS.positive_variational_family,
num_documents,
FLAGS.num_topics,
num_words,
num_authors,
FLAGS.num_samples,
FLAGS.cavi,
fitted_document_shape,
fitted_document_rate,
fitted_topic_shape,
fitted_topic_rate,)
# Add start epoch so checkpoint state is saved.
model.start_epoch = tf.Variable(-1)
checkpoint_dir = os.path.join(save_dir, "checkpoints")
if os.path.exists(checkpoint_dir) and FLAGS.load_checkpoint:
pass
else:
# If we're not loading a checkpoint, overwrite the existing directory
# with saved results.
if os.path.exists(save_dir):
print("Deleting old log directory at {}".format(save_dir))
tf.io.gfile.rmtree(save_dir)
# We keep track of the seed to make sure the random number state is the same
# whether or not we load a model.
_, seed = tfp.random.split_seed(FLAGS.seed)
checkpoint = tf.train.Checkpoint(optimizer=optim,
net=model,
seed=tf.Variable(seed))
manager = tf.train.CheckpointManager(checkpoint,
checkpoint_dir,
max_to_keep=1)
checkpoint.restore(manager.latest_checkpoint)
if manager.latest_checkpoint:
# Load from saved checkpoint, keeping track of the seed.
seed = checkpoint.seed
# Since the dataset shuffles at every epoch and we'd like the runs to be
# identical whether or not we load a checkpoint, we need to make sure the