-
Notifications
You must be signed in to change notification settings - Fork 56
/
michi.py
executable file
·1185 lines (1041 loc) · 45.8 KB
/
michi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env pypy
# -*- coding: utf-8 -*-
#
# (c) Petr Baudis <[email protected]> 2015
# MIT licence (i.e. almost public domain)
#
# A minimalistic Go-playing engine attempting to strike a balance between
# brevity, educational value and strength. It can beat GNUGo on 13x13 board
# on a modest 4-thread laptop.
#
# When benchmarking, note that at the beginning of the first move the program
# runs much slower because pypy is JIT compiling on the background!
#
# To start reading the code, begin either:
# * Bottom up, by looking at the goban implementation - starting with
# the 'empty' definition below and Position.move() method.
# * In the middle, by looking at the Monte Carlo playout implementation,
# starting with the mcplayout() function.
# * Top down, by looking at the MCTS implementation, starting with the
# tree_search() function. It can look a little confusing due to the
# parallelization, but really is just a loop of tree_descend(),
# mcplayout() and tree_update() round and round.
# It may be better to jump around a bit instead of just reading straight
# from start to end.
from __future__ import print_function
from collections import namedtuple
from itertools import count
import math
import multiprocessing
from multiprocessing.pool import Pool
import random
import re
import sys
import time
# Given a board of size NxN (N=9, 19, ...), we represent the position
# as an (N+1)*(N+2) string, with '.' (empty), 'X' (to-play player),
# 'x' (other player), and whitespace (off-board border to make rules
# implementation easier). Coordinates are just indices in this string.
# You can simply print(board) when debugging.
N = 13
W = N + 2
empty = "\n".join([(N+1)*' '] + N*[' '+N*'.'] + [(N+2)*' '])
colstr = 'ABCDEFGHJKLMNOPQRST'
MAX_GAME_LEN = N * N * 3
N_SIMS = 1400
RAVE_EQUIV = 3500
EXPAND_VISITS = 8
PRIOR_EVEN = 10 # should be even number; 0.5 prior
PRIOR_SELFATARI = 10 # negative prior
PRIOR_CAPTURE_ONE = 15
PRIOR_CAPTURE_MANY = 30
PRIOR_PAT3 = 10
PRIOR_LARGEPATTERN = 100 # most moves have relatively small probability
PRIOR_CFG = [24, 22, 8] # priors for moves in cfg dist. 1, 2, 3
PRIOR_EMPTYAREA = 10
REPORT_PERIOD = 200
PROB_HEURISTIC = {'capture': 0.9, 'pat3': 0.95} # probability of heuristic suggestions being taken in playout
PROB_SSAREJECT = 0.9 # probability of rejecting suggested self-atari in playout
PROB_RSAREJECT = 0.5 # probability of rejecting random self-atari in playout; this is lower than above to allow nakade
RESIGN_THRES = 0.2
FASTPLAY20_THRES = 0.8 # if at 20% playouts winrate is >this, stop reading
FASTPLAY5_THRES = 0.95 # if at 5% playouts winrate is >this, stop reading
pat3src = [ # 3x3 playout patterns; X,O are colors, x,o are their inverses
["XOX", # hane pattern - enclosing hane
"...",
"???"],
["XO.", # hane pattern - non-cutting hane
"...",
"?.?"],
["XO?", # hane pattern - magari
"X..",
"x.?"],
# ["XOO", # hane pattern - thin hane
# "...",
# "?.?", "X", - only for the X player
[".O.", # generic pattern - katatsuke or diagonal attachment; similar to magari
"X..",
"..."],
["XO?", # cut1 pattern (kiri] - unprotected cut
"O.o",
"?o?"],
["XO?", # cut1 pattern (kiri] - peeped cut
"O.X",
"???"],
["?X?", # cut2 pattern (de]
"O.O",
"ooo"],
["OX?", # cut keima
"o.O",
"???"],
["X.?", # side pattern - chase
"O.?",
" "],
["OX?", # side pattern - block side cut
"X.O",
" "],
["?X?", # side pattern - block side connection
"x.O",
" "],
["?XO", # side pattern - sagari
"x.x",
" "],
["?OX", # side pattern - cut
"X.O",
" "],
]
pat_gridcular_seq = [ # Sequence of coordinate offsets of progressively wider diameters in gridcular metric
[[0,0],
[0,1], [0,-1], [1,0], [-1,0],
[1,1], [-1,1], [1,-1], [-1,-1], ], # d=1,2 is not considered separately
[[0,2], [0,-2], [2,0], [-2,0], ],
[[1,2], [-1,2], [1,-2], [-1,-2], [2,1], [-2,1], [2,-1], [-2,-1], ],
[[0,3], [0,-3], [2,2], [-2,2], [2,-2], [-2,-2], [3,0], [-3,0], ],
[[1,3], [-1,3], [1,-3], [-1,-3], [3,1], [-3,1], [3,-1], [-3,-1], ],
[[0,4], [0,-4], [2,3], [-2,3], [2,-3], [-2,-3], [3,2], [-3,2], [3,-2], [-3,-2], [4,0], [-4,0], ],
[[1,4], [-1,4], [1,-4], [-1,-4], [3,3], [-3,3], [3,-3], [-3,-3], [4,1], [-4,1], [4,-1], [-4,-1], ],
[[0,5], [0,-5], [2,4], [-2,4], [2,-4], [-2,-4], [4,2], [-4,2], [4,-2], [-4,-2], [5,0], [-5,0], ],
[[1,5], [-1,5], [1,-5], [-1,-5], [3,4], [-3,4], [3,-4], [-3,-4], [4,3], [-4,3], [4,-3], [-4,-3], [5,1], [-5,1], [5,-1], [-5,-1], ],
[[0,6], [0,-6], [2,5], [-2,5], [2,-5], [-2,-5], [4,4], [-4,4], [4,-4], [-4,-4], [5,2], [-5,2], [5,-2], [-5,-2], [6,0], [-6,0], ],
[[1,6], [-1,6], [1,-6], [-1,-6], [3,5], [-3,5], [3,-5], [-3,-5], [5,3], [-5,3], [5,-3], [-5,-3], [6,1], [-6,1], [6,-1], [-6,-1], ],
[[0,7], [0,-7], [2,6], [-2,6], [2,-6], [-2,-6], [4,5], [-4,5], [4,-5], [-4,-5], [5,4], [-5,4], [5,-4], [-5,-4], [6,2], [-6,2], [6,-2], [-6,-2], [7,0], [-7,0], ],
]
spat_patterndict_file = 'patterns.spat'
large_patterns_file = 'patterns.prob'
#######################
# board string routines
def neighbors(c):
""" generator of coordinates for all neighbors of c """
return [c-1, c+1, c-W, c+W]
def diag_neighbors(c):
""" generator of coordinates for all diagonal neighbors of c """
return [c-W-1, c-W+1, c+W-1, c+W+1]
def board_put(board, c, p):
return board[:c] + p + board[c+1:]
def floodfill(board, c):
""" replace continuous-color area starting at c with special color # """
# This is called so much that a bytearray is worthwhile...
byteboard = bytearray(board)
p = byteboard[c]
byteboard[c] = ord('#')
fringe = [c]
while fringe:
c = fringe.pop()
for d in neighbors(c):
if byteboard[d] == p:
byteboard[d] = ord('#')
fringe.append(d)
return str(byteboard)
# Regex that matches various kind of points adjecent to '#' (floodfilled) points
contact_res = dict()
for p in ['.', 'x', 'X']:
rp = '\\.' if p == '.' else p
contact_res_src = ['#' + rp, # p at right
rp + '#', # p at left
'#' + '.'*(W-1) + rp, # p below
rp + '.'*(W-1) + '#'] # p above
contact_res[p] = re.compile('|'.join(contact_res_src), flags=re.DOTALL)
def contact(board, p):
""" test if point of color p is adjecent to color # anywhere
on the board; use in conjunction with floodfill for reachability """
m = contact_res[p].search(board)
if not m:
return None
return m.start() if m.group(0)[0] == p else m.end() - 1
def is_eyeish(board, c):
""" test if c is inside a single-color diamond and return the diamond
color or None; this could be an eye, but also a false one """
eyecolor = None
for d in neighbors(c):
if board[d].isspace():
continue
if board[d] == '.':
return None
if eyecolor is None:
eyecolor = board[d]
othercolor = eyecolor.swapcase()
elif board[d] == othercolor:
return None
return eyecolor
def is_eye(board, c):
""" test if c is an eye and return its color or None """
eyecolor = is_eyeish(board, c)
if eyecolor is None:
return None
# Eye-like shape, but it could be a falsified eye
falsecolor = eyecolor.swapcase()
false_count = 0
at_edge = False
for d in diag_neighbors(c):
if board[d].isspace():
at_edge = True
elif board[d] == falsecolor:
false_count += 1
if at_edge:
false_count += 1
if false_count >= 2:
return None
return eyecolor
class Position(namedtuple('Position', 'board cap n ko last last2 komi')):
""" Implementation of simple Chinese Go rules;
n is how many moves were played so far """
def move(self, c):
""" play as player X at the given coord c, return the new position """
# Test for ko
if c == self.ko:
return None
# Are we trying to play in enemy's eye?
in_enemy_eye = is_eyeish(self.board, c) == 'x'
board = board_put(self.board, c, 'X')
# Test for captures, and track ko
capX = self.cap[0]
singlecaps = []
for d in neighbors(c):
if board[d] != 'x':
continue
# XXX: The following is an extremely naive and SLOW approach
# at things - to do it properly, we should maintain some per-group
# data structures tracking liberties.
fboard = floodfill(board, d) # get a board with the adjecent group replaced by '#'
if contact(fboard, '.') is not None:
continue # some liberties left
# no liberties left for this group, remove the stones!
capcount = fboard.count('#')
if capcount == 1:
singlecaps.append(d)
capX += capcount
board = fboard.replace('#', '.') # capture the group
# Set ko
ko = singlecaps[0] if in_enemy_eye and len(singlecaps) == 1 else None
# Test for suicide
if contact(floodfill(board, c), '.') is None:
return None
# Update the position and return
return Position(board=board.swapcase(), cap=(self.cap[1], capX),
n=self.n + 1, ko=ko, last=c, last2=self.last, komi=self.komi)
def pass_move(self):
""" pass - i.e. return simply a flipped position """
return Position(board=self.board.swapcase(), cap=(self.cap[1], self.cap[0]),
n=self.n + 1, ko=None, last=None, last2=self.last, komi=self.komi)
def moves(self, i0):
""" Generate a list of moves (includes false positives - suicide moves;
does not include true-eye-filling moves), starting from a given board
index (that can be used for randomization) """
i = i0-1
passes = 0
while True:
i = self.board.find('.', i+1)
if passes > 0 and (i == -1 or i >= i0):
break # we have looked through the whole board
elif i == -1:
i = 0
passes += 1
continue # go back and start from the beginning
# Test for to-play player's one-point eye
if is_eye(self.board, i) == 'X':
continue
yield i
def last_moves_neighbors(self):
""" generate a randomly shuffled list of points including and
surrounding the last two moves (but with the last move having
priority) """
clist = []
for c in self.last, self.last2:
if c is None: continue
dlist = [c] + list(neighbors(c) + diag_neighbors(c))
random.shuffle(dlist)
clist += [d for d in dlist if d not in clist]
return clist
def score(self, owner_map=None):
""" compute score for to-play player; this assumes a final position
with all dead stones captured; if owner_map is passed, it is assumed
to be an array of statistics with average owner at the end of the game
(+1 black, -1 white) """
board = self.board
i = 0
while True:
i = self.board.find('.', i+1)
if i == -1:
break
fboard = floodfill(board, i)
# fboard is board with some continuous area of empty space replaced by #
touches_X = contact(fboard, 'X') is not None
touches_x = contact(fboard, 'x') is not None
if touches_X and not touches_x:
board = fboard.replace('#', 'X')
elif touches_x and not touches_X:
board = fboard.replace('#', 'x')
else:
board = fboard.replace('#', ':') # seki, rare
# now that area is replaced either by X, x or :
komi = self.komi if self.n % 2 == 1 else -self.komi
if owner_map is not None:
for c in range(W*W):
n = 1 if board[c] == 'X' else -1 if board[c] == 'x' else 0
owner_map[c] += n * (1 if self.n % 2 == 0 else -1)
return board.count('X') - board.count('x') + komi
def empty_position():
""" Return an initial board position """
return Position(board=empty, cap=(0, 0), n=0, ko=None, last=None, last2=None, komi=7.5)
###############
# go heuristics
def fix_atari(pos, c, singlept_ok=False, twolib_test=True, twolib_edgeonly=False):
""" An atari/capture analysis routine that checks the group at c,
determining whether (i) it is in atari (ii) if it can escape it,
either by playing on its liberty or counter-capturing another group.
N.B. this is maybe the most complicated part of the whole program (sadly);
feel free to just TREAT IT AS A BLACK-BOX, it's not really that
interesting!
The return value is a tuple of (boolean, [coord..]), indicating whether
the group is in atari and how to escape/capture (or [] if impossible).
(Note that (False, [...]) is possible in case the group can be captured
in a ladder - it is not in atari but some capture attack/defense moves
are available.)
singlept_ok means that we will not try to save one-point groups;
twolib_test means that we will check for 2-liberty groups which are
threatened by a ladder
twolib_edgeonly means that we will check the 2-liberty groups only
at the board edge, allowing check of the most common short ladders
even in the playouts """
def read_ladder_attack(pos, c, l1, l2):
""" check if a capturable ladder is being pulled out at c and return
a move that continues it in that case; expects its two liberties as
l1, l2 (in fact, this is a general 2-lib capture exhaustive solver) """
for l in [l1, l2]:
pos_l = pos.move(l)
if pos_l is None:
continue
# fix_atari() will recursively call read_ladder_attack() back;
# however, ignore 2lib groups as we don't have time to chase them
is_atari, atari_escape = fix_atari(pos_l, c, twolib_test=False)
if is_atari and not atari_escape:
return l
return None
fboard = floodfill(pos.board, c)
group_size = fboard.count('#')
if singlept_ok and group_size == 1:
return (False, [])
# Find a liberty
l = contact(fboard, '.')
# Ok, any other liberty?
fboard = board_put(fboard, l, 'L')
l2 = contact(fboard, '.')
if l2 is not None:
# At least two liberty group...
if twolib_test and group_size > 1 \
and (not twolib_edgeonly or line_height(l) == 0 and line_height(l2) == 0) \
and contact(board_put(fboard, l2, 'L'), '.') is None:
# Exactly two liberty group with more than one stone. Check
# that it cannot be caught in a working ladder; if it can,
# that's as good as in atari, a capture threat.
# (Almost - N/A for countercaptures.)
ladder_attack = read_ladder_attack(pos, c, l, l2)
if ladder_attack:
return (False, [ladder_attack])
return (False, [])
# In atari! If it's the opponent's group, that's enough...
if pos.board[c] == 'x':
return (True, [l])
solutions = []
# Before thinking about defense, what about counter-capturing
# a neighboring group?
ccboard = fboard
while True:
othergroup = contact(ccboard, 'x')
if othergroup is None:
break
a, ccls = fix_atari(pos, othergroup, twolib_test=False)
if a and ccls:
solutions += ccls
# XXX: floodfill is better for big groups
ccboard = board_put(ccboard, othergroup, '%')
# We are escaping. Will playing our last liberty gain
# at least two liberties? Re-floodfill to account for connecting
escpos = pos.move(l)
if escpos is None:
return (True, solutions) # oops, suicidal move
fboard = floodfill(escpos.board, l)
l_new = contact(fboard, '.')
fboard = board_put(fboard, l_new, 'L')
l_new_2 = contact(fboard, '.')
if l_new_2 is not None:
# Good, there is still some liberty remaining - but if it's
# just the two, check that we are not caught in a ladder...
# (Except that we don't care if we already have some alternative
# escape routes!)
if solutions or not (contact(board_put(fboard, l_new_2, 'L'), '.') is None
and read_ladder_attack(escpos, l, l_new, l_new_2) is not None):
solutions.append(l)
return (True, solutions)
def cfg_distances(board, c):
""" return a board map listing common fate graph distances from
a given point - this corresponds to the concept of locality while
contracting groups to single points """
cfg_map = W*W*[-1]
cfg_map[c] = 0
# flood-fill like mechanics
fringe = [c]
while fringe:
c = fringe.pop()
for d in neighbors(c):
if board[d].isspace() or 0 <= cfg_map[d] <= cfg_map[c]:
continue
cfg_before = cfg_map[d]
if board[d] != '.' and board[d] == board[c]:
cfg_map[d] = cfg_map[c]
else:
cfg_map[d] = cfg_map[c] + 1
if cfg_before < 0 or cfg_before > cfg_map[d]:
fringe.append(d)
return cfg_map
def line_height(c):
""" Return the line number above nearest board edge """
row, col = divmod(c - (W+1), W)
return min(row, col, N-1-row, N-1-col)
def empty_area(board, c, dist=3):
""" Check whether there are any stones in Manhattan distance up
to dist """
for d in neighbors(c):
if board[d] in 'Xx':
return False
elif board[d] == '.' and dist > 1 and not empty_area(board, d, dist-1):
return False
return True
# 3x3 pattern routines (those patterns stored in pat3src above)
def pat3_expand(pat):
""" All possible neighborhood configurations matching a given pattern;
used just for a combinatoric explosion when loading them in an
in-memory set. """
def pat_rot90(p):
return [p[2][0] + p[1][0] + p[0][0], p[2][1] + p[1][1] + p[0][1], p[2][2] + p[1][2] + p[0][2]]
def pat_vertflip(p):
return [p[2], p[1], p[0]]
def pat_horizflip(p):
return [l[::-1] for l in p]
def pat_swapcolors(p):
return [l.replace('X', 'Z').replace('x', 'z').replace('O', 'X').replace('o', 'x').replace('Z', 'O').replace('z', 'o') for l in p]
def pat_wildexp(p, c, to):
i = p.find(c)
if i == -1:
return [p]
return reduce(lambda a, b: a + b, [pat_wildexp(p[:i] + t + p[i+1:], c, to) for t in to])
def pat_wildcards(pat):
return [p for p in pat_wildexp(pat, '?', list('.XO '))
for p in pat_wildexp(p, 'x', list('.O '))
for p in pat_wildexp(p, 'o', list('.X '))]
return [p for p in [pat, pat_rot90(pat)]
for p in [p, pat_vertflip(p)]
for p in [p, pat_horizflip(p)]
for p in [p, pat_swapcolors(p)]
for p in pat_wildcards(''.join(p))]
pat3set = set([p.replace('O', 'x') for p in pat3src for p in pat3_expand(p)])
def neighborhood_33(board, c):
""" return a string containing the 9 points forming 3x3 square around
a certain move candidate """
return (board[c-W-1 : c-W+2] + board[c-1 : c+2] + board[c+W-1 : c+W+2]).replace('\n', ' ')
# large-scale pattern routines (those patterns living in patterns.{spat,prob} files)
# are you curious how these patterns look in practice? get
# https://github.com/pasky/pachi/blob/master/tools/pattern_spatial_show.pl
# and try e.g. ./pattern_spatial_show.pl 71
spat_patterndict = dict() # hash(neighborhood_gridcular()) -> spatial id
def load_spat_patterndict(f):
""" load dictionary of positions, translating them to numeric ids """
for line in f:
# line: 71 6 ..X.X..OO.O..........#X...... 33408f5e 188e9d3e 2166befe aa8ac9e 127e583e 1282462e 5e3d7fe 51fc9ee
if line.startswith('#'):
continue
neighborhood = line.split()[2].replace('#', ' ').replace('O', 'x')
spat_patterndict[hash(neighborhood)] = int(line.split()[0])
large_patterns = dict() # spatial id -> probability
def load_large_patterns(f):
""" dictionary of numeric pattern ids, translating them to probabilities
that a move matching such move will be played when it is available """
# The pattern file contains other features like capture, selfatari too;
# we ignore them for now
for line in f:
# line: 0.004 14 3842 (capture:17 border:0 s:784)
p = float(line.split()[0])
m = re.search('s:(\d+)', line)
if m is not None:
s = int(m.groups()[0])
large_patterns[s] = p
def neighborhood_gridcular(board, c):
""" Yield progressively wider-diameter gridcular board neighborhood
stone configuration strings, in all possible rotations """
# Each rotations element is (xyindex, xymultiplier)
rotations = [((0,1),(1,1)), ((0,1),(-1,1)), ((0,1),(1,-1)), ((0,1),(-1,-1)),
((1,0),(1,1)), ((1,0),(-1,1)), ((1,0),(1,-1)), ((1,0),(-1,-1))]
neighborhood = ['' for i in range(len(rotations))]
wboard = board.replace('\n', ' ')
for dseq in pat_gridcular_seq:
for ri in range(len(rotations)):
r = rotations[ri]
for o in dseq:
y, x = divmod(c - (W+1), W)
y += o[r[0][0]]*r[1][0]
x += o[r[0][1]]*r[1][1]
if y >= 0 and y < N and x >= 0 and x < N:
neighborhood[ri] += wboard[(y+1)*W + x+1]
else:
neighborhood[ri] += ' '
yield neighborhood[ri]
def large_pattern_probability(board, c):
""" return probability of large-scale pattern at coordinate c.
Multiple progressively wider patterns may match a single coordinate,
we consider the largest one. """
probability = None
matched_len = 0
non_matched_len = 0
for n in neighborhood_gridcular(board, c):
sp_i = spat_patterndict.get(hash(n))
prob = large_patterns.get(sp_i) if sp_i is not None else None
if prob is not None:
probability = prob
matched_len = len(n)
elif matched_len < non_matched_len < len(n):
# stop when we did not match any pattern with a certain
# diameter - it ain't going to get any better!
break
else:
non_matched_len = len(n)
return probability
###########################
# montecarlo playout policy
def gen_playout_moves(pos, heuristic_set, probs={'capture': 1, 'pat3': 1}, expensive_ok=False):
""" Yield candidate next moves in the order of preference; this is one
of the main places where heuristics dwell, try adding more!
heuristic_set is the set of coordinates considered for applying heuristics;
this is the immediate neighborhood of last two moves in the playout, but
the whole board while prioring the tree. """
# Check whether any local group is in atari and fill that liberty
# print('local moves', [str_coord(c) for c in heuristic_set], file=sys.stderr)
if random.random() <= probs['capture']:
already_suggested = set()
for c in heuristic_set:
if pos.board[c] in 'Xx':
in_atari, ds = fix_atari(pos, c, twolib_edgeonly=not expensive_ok)
random.shuffle(ds)
for d in ds:
if d not in already_suggested:
yield (d, 'capture '+str(c))
already_suggested.add(d)
# Try to apply a 3x3 pattern on the local neighborhood
if random.random() <= probs['pat3']:
already_suggested = set()
for c in heuristic_set:
if pos.board[c] == '.' and c not in already_suggested and neighborhood_33(pos.board, c) in pat3set:
yield (c, 'pat3')
already_suggested.add(c)
# Try *all* available moves, but starting from a random point
# (in other words, suggest a random move)
x, y = random.randint(1, N), random.randint(1, N)
for c in pos.moves(y*W + x):
yield (c, 'random')
def mcplayout(pos, amaf_map, disp=False):
""" Start a Monte Carlo playout from a given position,
return score for to-play player at the starting position;
amaf_map is board-sized scratchpad recording who played at a given
position first """
if disp: print('** SIMULATION **', file=sys.stderr)
start_n = pos.n
passes = 0
while passes < 2 and pos.n < MAX_GAME_LEN:
if disp: print_pos(pos)
pos2 = None
# We simply try the moves our heuristics generate, in a particular
# order, but not with 100% probability; this is on the border between
# "rule-based playouts" and "probability distribution playouts".
for c, kind in gen_playout_moves(pos, pos.last_moves_neighbors(), PROB_HEURISTIC):
if disp and kind != 'random':
print('move suggestion', str_coord(c), kind, file=sys.stderr)
pos2 = pos.move(c)
if pos2 is None:
continue
# check if the suggested move did not turn out to be a self-atari
if random.random() <= (PROB_RSAREJECT if kind == 'random' else PROB_SSAREJECT):
in_atari, ds = fix_atari(pos2, c, singlept_ok=True, twolib_edgeonly=True)
if ds:
if disp: print('rejecting self-atari move', str_coord(c), file=sys.stderr)
pos2 = None
continue
if amaf_map[c] == 0: # Mark the coordinate with 1 for black
amaf_map[c] = 1 if pos.n % 2 == 0 else -1
break
if pos2 is None: # no valid moves, pass
pos = pos.pass_move()
passes += 1
continue
passes = 0
pos = pos2
owner_map = W*W*[0]
score = pos.score(owner_map)
if disp: print('** SCORE B%+.1f **' % (score if pos.n % 2 == 0 else -score), file=sys.stderr)
if start_n % 2 != pos.n % 2:
score = -score
return score, amaf_map, owner_map
########################
# montecarlo tree search
class TreeNode():
""" Monte-Carlo tree node;
v is #visits, w is #wins for to-play (expected reward is w/v)
pv, pw are prior values (node value = w/v + pw/pv)
av, aw are amaf values ("all moves as first", used for the RAVE tree policy)
children is None for leaf nodes """
def __init__(self, pos):
self.pos = pos
self.v = 0
self.w = 0
self.pv = PRIOR_EVEN
self.pw = PRIOR_EVEN/2
self.av = 0
self.aw = 0
self.children = None
def expand(self):
""" add and initialize children to a leaf node """
cfg_map = cfg_distances(self.pos.board, self.pos.last) if self.pos.last is not None else None
self.children = []
childset = dict()
# Use playout generator to generate children and initialize them
# with some priors to bias search towards more sensible moves.
# Note that there can be many ways to incorporate the priors in
# next node selection (progressive bias, progressive widening, ...).
for c, kind in gen_playout_moves(self.pos, range(N, (N+1)*W), expensive_ok=True):
pos2 = self.pos.move(c)
if pos2 is None:
continue
# gen_playout_moves() will generate duplicate suggestions
# if a move is yielded by multiple heuristics
try:
node = childset[pos2.last]
except KeyError:
node = TreeNode(pos2)
self.children.append(node)
childset[pos2.last] = node
if kind.startswith('capture'):
# Check how big group we are capturing; coord of the group is
# second word in the ``kind`` string
if floodfill(self.pos.board, int(kind.split()[1])).count('#') > 1:
node.pv += PRIOR_CAPTURE_MANY
node.pw += PRIOR_CAPTURE_MANY
else:
node.pv += PRIOR_CAPTURE_ONE
node.pw += PRIOR_CAPTURE_ONE
elif kind == 'pat3':
node.pv += PRIOR_PAT3
node.pw += PRIOR_PAT3
# Second pass setting priors, considering each move just once now
for node in self.children:
c = node.pos.last
if cfg_map is not None and cfg_map[c]-1 < len(PRIOR_CFG):
node.pv += PRIOR_CFG[cfg_map[c]-1]
node.pw += PRIOR_CFG[cfg_map[c]-1]
height = line_height(c) # 0-indexed
if height <= 2 and empty_area(self.pos.board, c):
# No stones around; negative prior for 1st + 2nd line, positive
# for 3rd line; sanitizes opening and invasions
if height <= 1:
node.pv += PRIOR_EMPTYAREA
node.pw += 0
if height == 2:
node.pv += PRIOR_EMPTYAREA
node.pw += PRIOR_EMPTYAREA
in_atari, ds = fix_atari(node.pos, c, singlept_ok=True)
if ds:
node.pv += PRIOR_SELFATARI
node.pw += 0 # negative prior
patternprob = large_pattern_probability(self.pos.board, c)
if patternprob is not None and patternprob > 0.001:
pattern_prior = math.sqrt(patternprob) # tone up
node.pv += pattern_prior * PRIOR_LARGEPATTERN
node.pw += pattern_prior * PRIOR_LARGEPATTERN
if not self.children:
# No possible moves, add a pass move
self.children.append(TreeNode(self.pos.pass_move()))
def rave_urgency(self):
v = self.v + self.pv
expectation = float(self.w+self.pw) / v
if self.av == 0:
return expectation
rave_expectation = float(self.aw) / self.av
beta = self.av / (self.av + v + float(v) * self.av / RAVE_EQUIV)
return beta * rave_expectation + (1-beta) * expectation
def winrate(self):
return float(self.w) / self.v if self.v > 0 else float('nan')
def best_move(self):
""" best move is the most simulated one """
return max(self.children, key=lambda node: node.v) if self.children is not None else None
def tree_descend(tree, amaf_map, disp=False):
""" Descend through the tree to a leaf """
tree.v += 1
nodes = [tree]
passes = 0
while nodes[-1].children is not None and passes < 2:
if disp: print_pos(nodes[-1].pos)
# Pick the most urgent child
children = list(nodes[-1].children)
if disp:
for c in children:
dump_subtree(c, recurse=False)
random.shuffle(children) # randomize the max in case of equal urgency
node = max(children, key=lambda node: node.rave_urgency())
nodes.append(node)
if disp: print('chosen %s' % (str_coord(node.pos.last),), file=sys.stderr)
if node.pos.last is None:
passes += 1
else:
passes = 0
if amaf_map[node.pos.last] == 0: # Mark the coordinate with 1 for black
amaf_map[node.pos.last] = 1 if nodes[-2].pos.n % 2 == 0 else -1
# updating visits on the way *down* represents "virtual loss", relevant for parallelization
node.v += 1
if node.children is None and node.v >= EXPAND_VISITS:
node.expand()
return nodes
def tree_update(nodes, amaf_map, score, disp=False):
""" Store simulation result in the tree (@nodes is the tree path) """
for node in reversed(nodes):
if disp: print('updating', str_coord(node.pos.last), score < 0, file=sys.stderr)
node.w += score < 0 # score is for to-play, node statistics for just-played
# Update the node children AMAF stats with moves we made
# with their color
amaf_map_value = 1 if node.pos.n % 2 == 0 else -1
if node.children is not None:
for child in node.children:
if child.pos.last is None:
continue
if amaf_map[child.pos.last] == amaf_map_value:
if disp: print(' AMAF updating', str_coord(child.pos.last), score > 0, file=sys.stderr)
child.aw += score > 0 # reversed perspective
child.av += 1
score = -score
worker_pool = None
def tree_search(tree, n, owner_map, disp=False):
""" Perform MCTS search from a given position for a given #iterations """
# Initialize root node
if tree.children is None:
tree.expand()
# We could simply run tree_descend(), mcplayout(), tree_update()
# sequentially in a loop. This is essentially what the code below
# does, if it seems confusing!
# However, we also have an easy (though not optimal) way to parallelize
# by distributing the mcplayout() calls to other processes using the
# multiprocessing Python module. mcplayout() consumes maybe more than
# 90% CPU, especially on larger boards. (Except that with large patterns,
# expand() in the tree descent phase may be quite expensive - we can tune
# that tradeoff by adjusting the EXPAND_VISITS constant.)
n_workers = multiprocessing.cpu_count() if not disp else 1 # set to 1 when debugging
global worker_pool
if worker_pool is None:
worker_pool = Pool(processes=n_workers)
outgoing = [] # positions waiting for a playout
incoming = [] # positions that finished evaluation
ongoing = [] # currently ongoing playout jobs
i = 0
while i < n:
if not outgoing and not (disp and ongoing):
# Descend the tree so that we have something ready when a worker
# stops being busy
amaf_map = W*W*[0]
nodes = tree_descend(tree, amaf_map, disp=disp)
outgoing.append((nodes, amaf_map))
if len(ongoing) >= n_workers:
# Too many playouts running? Wait a bit...
ongoing[0][0].wait(0.01 / n_workers)
else:
i += 1
if i > 0 and i % REPORT_PERIOD == 0:
print_tree_summary(tree, i, f=sys.stderr)
# Issue an mcplayout job to the worker pool
nodes, amaf_map = outgoing.pop()
ongoing.append((worker_pool.apply_async(mcplayout, (nodes[-1].pos, amaf_map, disp)), nodes))
# Anything to store in the tree? (We do this step out-of-order
# picking up data from the previous round so that we don't stall
# ready workers while we update the tree.)
while incoming:
score, amaf_map, owner_map_one, nodes = incoming.pop()
tree_update(nodes, amaf_map, score, disp=disp)
for c in range(W*W):
owner_map[c] += owner_map_one[c]
# Any playouts are finished yet?
for job, nodes in ongoing:
if not job.ready():
continue
# Yes! Queue them up for storing in the tree.
score, amaf_map, owner_map_one = job.get()
incoming.append((score, amaf_map, owner_map_one, nodes))
ongoing.remove((job, nodes))
# Early stop test
best_wr = tree.best_move().winrate()
if i > n*0.05 and best_wr > FASTPLAY5_THRES or i > n*0.2 and best_wr > FASTPLAY20_THRES:
break
for c in range(W*W):
owner_map[c] = float(owner_map[c]) / i
dump_subtree(tree)
print_tree_summary(tree, i, f=sys.stderr)
return tree.best_move()
###################
# user interface(s)
# utility routines
def print_pos(pos, f=sys.stderr, owner_map=None):
""" print visualization of the given board position, optionally also
including an owner map statistic (probability of that area of board
eventually becoming black/white) """
if pos.n % 2 == 0: # to-play is black
board = pos.board.replace('x', 'O')
Xcap, Ocap = pos.cap
else: # to-play is white
board = pos.board.replace('X', 'O').replace('x', 'X')
Ocap, Xcap = pos.cap
print('Move: %-3d Black: %d caps White: %d caps Komi: %.1f' % (pos.n, Xcap, Ocap, pos.komi), file=f)
pretty_board = ' '.join(board.rstrip()) + ' '
if pos.last is not None:
pretty_board = pretty_board[:pos.last*2-1] + '(' + board[pos.last] + ')' + pretty_board[pos.last*2+2:]
rowcounter = count()
pretty_board = [' %-02d%s' % (N-i, row[2:]) for row, i in zip(pretty_board.split("\n")[1:], rowcounter)]
if owner_map is not None:
pretty_ownermap = ''
for c in range(W*W):
if board[c].isspace():
pretty_ownermap += board[c]
elif owner_map[c] > 0.6:
pretty_ownermap += 'X'
elif owner_map[c] > 0.3:
pretty_ownermap += 'x'
elif owner_map[c] < -0.6:
pretty_ownermap += 'O'
elif owner_map[c] < -0.3:
pretty_ownermap += 'o'
else:
pretty_ownermap += '.'
pretty_ownermap = ' '.join(pretty_ownermap.rstrip())
pretty_board = ['%s %s' % (brow, orow[2:]) for brow, orow in zip(pretty_board, pretty_ownermap.split("\n")[1:])]
print("\n".join(pretty_board), file=f)
print(' ' + ' '.join(colstr[:N]), file=f)
print('', file=f)
def dump_subtree(node, thres=N_SIMS/50, indent=0, f=sys.stderr, recurse=True):
""" print this node and all its children with v >= thres. """
print("%s+- %s %.3f (%d/%d, prior %d/%d, rave %d/%d=%.3f, urgency %.3f)" %
(indent*' ', str_coord(node.pos.last), node.winrate(),
node.w, node.v, node.pw, node.pv, node.aw, node.av,
float(node.aw)/node.av if node.av > 0 else float('nan'),
node.rave_urgency()), file=f)
if not recurse:
return
for child in sorted(node.children, key=lambda n: n.v, reverse=True):
if child.v >= thres:
dump_subtree(child, thres=thres, indent=indent+3, f=f)
def print_tree_summary(tree, sims, f=sys.stderr):
best_nodes = sorted(tree.children, key=lambda n: n.v, reverse=True)[:5]
best_seq = []
node = tree
while node is not None:
best_seq.append(node.pos.last)
node = node.best_move()
print('[%4d] winrate %.3f | seq %s | can %s' %
(sims, best_nodes[0].winrate(), ' '.join([str_coord(c) for c in best_seq[1:6]]),
' '.join(['%s(%.3f)' % (str_coord(n.pos.last), n.winrate()) for n in best_nodes])), file=f)
def parse_coord(s):
if s == 'pass':
return None
return W+1 + (N - int(s[1:])) * W + colstr.index(s[0].upper())
def str_coord(c):
if c is None:
return 'pass'
row, col = divmod(c - (W+1), W)
return '%c%d' % (colstr[col], N - row)
# various main programs
def mcbenchmark(n):
""" run n Monte-Carlo playouts from empty position, return avg. score """
sumscore = 0
for i in range(0, n):
sumscore += mcplayout(empty_position(), W*W*[0])[0]
return float(sumscore) / n