-
Notifications
You must be signed in to change notification settings - Fork 121
/
Copy pathsingle_factor_test.py
885 lines (773 loc) · 40.6 KB
/
single_factor_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
# -*- coding: utf-8 -*-
"""
阿尔法收割者
Project: alphasickle
Author: Moses
E-mail: [email protected]
"""
import os
import warnings
import numpy as np
import pandas as pd
import statsmodels.api as sm
import pandas.tseries.offsets as toffsets
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from scipy import stats
from copy import deepcopy
warnings.filterwarnings('ignore') #将运行中的警告信息设置为“忽略”,从而不在控制台显示
__all__ = ['single_factor_test', 'layer_division_backtest', 'get_factor_names', 'panel_to_matrix', 'Backtest_stock', 'regress']
#工作目录,存放代码和因子基本信息
work_dir = os.path.dirname(os.path.dirname(__file__))
#经过预处理后的因子截面数据存放目录
factor_path = os.path.join(work_dir, '因子预处理模块', '因子(已预处理)')
#测试结果图表存放目录(如无则自动生成)
sf_test_save_path = os.path.join(work_dir, '单因子检验')
industry_benchmark = 'zx' #行业基准-中信一级行业
plt.rcParams['font.sans-serif'] = ['SimHei'] #正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #正常显示负号
plt.rcParams['figure.figsize'] = (15.0, 6.0) #图片尺寸设定(宽 * 高 cm^2)
plt.rcParams['font.size'] = 15 #字体大小
num_layers = 5 #设置分层层数
tick_spacing1 = 9 #设置画图的横轴密度
def get_factor_names():
global work_dir
factor_info = pd.read_excel(os.path.join(work_dir, '待检验因子列表.xlsx'), encoding='gbk', sheetname=0, index_col=[0])
return factor_info['因子名称'].values.tolist()
def regress(y, X, w=1, intercept=False):
if intercept: #是否添加截距项
X = sm.add_constant(X)
model = sm.WLS(y, X, weights=w) #加权最小二乘
result = model.fit()
ts, params = result.tvalues, result.params #t值,回归系数(因子收益)
ts.index = X.columns
params.index = X.columns
resid = y - np.dot(X, params.T) #计算残差项(股票残差收益)
return ts, params, resid
def get_ind_mktcap_matrix(datdf, ind=True, mktcap=True):
""" 用于线性回归的时候是否行业中性或者市值中性
"""
global industry_benchmark
if mktcap:
lncap = np.log(datdf['MKT_CAP_FLOAT'])
lncap.name = 'ln_mkt_cap'
else:
lncap = pd.DataFrame()
if ind:
ind_dummy_matrix = pd.get_dummies(datdf[f'industry_{industry_benchmark}']) #转换为行业哑变量
else:
ind_dummy_matrix = pd.DataFrame()
return pd.concat([lncap, ind_dummy_matrix], axis=1)
def get_ic(datdf, fac_name, neutralize=False):
pctchgnm = datdf['PCT_CHG_NM'] #截面上所有股票下月收益率列表
facdat = datdf[fac_name] #截面上所有股票对应的当期因子值(因子暴露)列表
if neutralize: #中性化: 因子值(因子暴露)作为因变量,市值和行业哑变量作为自变量进行线性回归,用回归残差替换原因子值
ind_mktcap_matrix = get_ind_mktcap_matrix(facdat)
_, _, facdat = regress(facdat, ind_mktcap_matrix)
dat = pd.concat([facdat, pctchgnm], axis=1) #截面上股票当期因子值和股票下期收益率的相关系数就是ic值
ic = dat.corr().iat[0,1]
return ic
def regression_summary(ts, frets, ics):
''' 测试结果概要总结
'''
#因为历史数据最后一期的PCT_CHG_NM是有可能为空,所以算出来的最后一期结果也有可能为空,去掉,不然会导致下面算一年概要的时候导致整年为空
ts = ts.dropna().values
frets = frets.dropna().values
ics = ics.dropna().values
res = {}
res['t值绝对值平均值'] = np.mean(np.abs(ts)) #t值绝对值平均值
res['t值绝对值>2概率'] = len(ts[np.abs(ts) > 2]) / len(ts) #t值绝对值>2概率
res['因子收益平均值'] = np.mean(frets) #因子收益平均值
res['因子收益标准差'] = np.std(frets) #因子收益标准差
res['因子收益t值'] = stats.ttest_1samp(frets, 0).statistic #因子收益t值
res['因子收益>0概率'] = len(frets[frets > 0]) / len(frets) #因子收益>0概率
res['IC平均值'] = np.mean(ics) #IC平均值
res['IC标准差'] = np.std(ics) #IC标准差
res['ICIR'] = res['IC平均值'] / res['IC标准差'] #ICIR
res['IC>0概率'] = len(ics[ics>0]) / len(ics) #IC>0概率
return pd.Series(res)
def t_ic_test(datpanel, factor_name):
""" 对单个因子用一年的数据进行检验.
这里有个细节需要注意:正常月频一年12个截面,如2015-01-30.csv,2015-02-27.csv....直到2015-12-31.csv,
但是因为每一个截面文件包含的其实是下一期期初的因子值和期末的股票收益率,所以求出的因子收益率或者IC值等
都是下一期的值(计算所需参数:每期期初的因子值和期末的股票收益率),比如说截面文件是2015-1月~~2015年12月,
但求出的因子收益率或者ic是指2015-2月~~2016年1月,当然我们可以重新对齐一下日期,不过不处理也不影响实际结果.
"""
t_series, fret_series, ic_series = pd.Series(), pd.Series(), pd.Series()
for date, datdf in datpanel.items(): #每次处理一个截面的数据,正常月频一年12个截面,如一次循环date=2009-01-23,datdf=这月截面数据
w = np.sqrt(datdf['MKT_CAP_FLOAT']) #流通市值开根号作为回归权重
y = datdf['PCT_CHG_NM'] #下月股票收益率列表作为因变量
X = datdf[factor_name] #因子值(因子暴露)作为自变量
ind_mktcap_matrix = get_ind_mktcap_matrix(datdf)
X = pd.concat([X, ind_mktcap_matrix], axis=1) #市值和行业哑变量同时作为自变量,用于行业和市值中性
ts, f_rets, _ = regress(y, X, w) #线性回归(加权最小二乘法)
t_series[date] = ts[factor_name]
fret_series[date] = f_rets[factor_name]
ic_series[date] = get_ic(datdf, factor_name)
summary = regression_summary(t_series, fret_series, ic_series)
return summary, t_series, fret_series, ic_series
def get_datdf_in_year(year):
global factor_path
dates = []
for f in os.listdir(factor_path): #月频正常情况下每年有12个截面文件
curdate = f.split('.')[0] #比如2009-01-23.csv => 2009-01-23
curyear = pd.to_datetime(curdate).year #比如2009-01-23 => 2009
if curyear == year:
dates.append(curdate)
datpanel = {}
for date in dates: #循环读取这一年内的每一个截面文件,正常每年12个截面文件
datdf = pd.read_csv(os.path.join(factor_path, date+'.csv'), engine='python', encoding='gbk', index_col=[0])
date = pd.to_datetime(date)
datpanel[date] = datdf
return datpanel #{datetime:dataframe} e.g.{2009-01-23:df, 2009-02-28:df, ...}
def get_test_result(factors, datpanel):
""" 检验一年的数据
"""
res = pd.DataFrame()
ts_all, frets_all, ics_all = pd.DataFrame(), pd.DataFrame(), pd.DataFrame()
for factor_name in factors: #每次检验一个因子
cur_fac_res, ts, frets, ics = t_ic_test(datpanel, factor_name) #对单个因子用一年的数据进行检验
col_name = factor_name.replace('/', '_div_') if '/' in factor_name else factor_name
cur_fac_res.name = col_name
ts.name = col_name
frets.name = col_name
ics.name = col_name
res = pd.concat([res, cur_fac_res], axis=1)
ts_all = pd.concat([ts_all, ts], axis=1)
frets_all = pd.concat([frets_all, frets], axis=1)
ics_all = pd.concat([ics_all, ics], axis=1)
ts_all = ts_all.sort_index()
frets_all = frets_all.sort_index()
ics_all = ics_all.sort_index()
return res, ts_all, frets_all, ics_all
def test_yearly(factors=None, start_year=2012, end_year=2019):
''' 按年进行检验
有个细节须注意,举例说明:比如对2015-1月到2016-12月共两年一共24个月的截面文件进行检验操作,
得到的因子收益率和ic值等实际是2015-2月到2017-1月的,分年来看的话2015年实际包含的内容是从2015-2月到2016-1月,
而2016年包含的内容实际是从2016-2月到2017-1月的.
针对上面的问题,未来可以这样修改:
先不分年,而是直接读取所有期的截面文件,分因子计算出各自的因子收益和IC等,然后再统一进行日期对齐操作,
然后再分年进行一些统计操作,实际上需要分年进行统计操作的也就只有 'T检验&IC检验结果.xlsx' 这一个输出文件而已
'''
global sf_test_save_path
years = range(start_year, end_year+1)
test_result = {}
ts_all, frets_all, ics_all = pd.DataFrame(), pd.DataFrame(), pd.DataFrame()
for year in years: #按年进行检验(月频每年12个截面文件)
datpanel = get_datdf_in_year(year) #读取一年的所有截面文件内容到内存
if factors is None:
factors = get_factor_names() #如果输入的因子名称列表为空, 就从某文件读取要处理的因子名称列表
cur_test_res, ts, frets, ics = get_test_result(factors, datpanel) #按年进行检验
test_result[year] = cur_test_res #总体概览
ts_all = pd.concat([ts_all, ts]) #t值序列
frets_all = pd.concat([frets_all, frets]) #因子收益序列
ics_all = pd.concat([ics_all, ics]) #IC值序列
#存储所有t值、因子收益率、ic值时间序列数据
for save_name, df in zip(['t_value', 'factor_return', 'ic'], [ts_all, frets_all, ics_all]):
df.to_csv(os.path.join(sf_test_save_path, save_name+'.csv'), encoding='gbk')
#存储检验结果表格
test_result = pd.Panel(test_result)
test_result = test_result.swapaxes(2, 0)
test_result = test_result.swapaxes(1, 2)
test_result.to_excel(os.path.join(sf_test_save_path, 'T检验&IC检验结果.xlsx'), encoding='gbk')
#绘制单因子检验图,并进行存储
plot_test_figure(ts_all, frets_all, ics_all, save=True)
def plot_test_figure(ts, frets, ics, save=True):
global sf_test_save_path
ts = np.abs(ts)
factors = ts.columns
fig_save_path = os.path.join(sf_test_save_path, 'T检验与IC检验结果图')
if not os.path.exists(fig_save_path):
os.mkdir(fig_save_path)
for fac in factors: #按因子逐个生成图片
t, fret, ic = ts[fac], frets[fac], ics[fac] #单个因子在测试时间周期上每个时间截面的相应测试结果值
sharedx = [str(d)[:10] for d in t.index] #时间字符串列表 e.g. ['2015-01-30','2015-02-27',...]
fig, axes = plt.subplots(3, 1, sharex=True)
fig.suptitle(fac)
bar_plot(axes[0], sharedx, t.values, 't value绝对值')
bar_plot(axes[1], sharedx, fret.values, '因子收益率')
bar_plot(axes[2], sharedx, ic.values, 'IC')
fig.savefig(os.path.join(fig_save_path, fac+'.png'))
plt.close()
def bar_plot(ax, x, y, title):
global tick_spacing1
ax.bar(x, y)
ax.xaxis.set_major_locator(ticker.MultipleLocator(tick_spacing1))
ax.set_title(title)
#净值回测
class Backtest_stock:
def __init__(self, *, market_data, start_date, end_date, benchmarkdata=None,
stock_weights=None, initial_capital=100000000, tradedays=None,
refreshdays=None, rf_rate=0.04, use_pctchg=False, **kwargs):
if stock_weights is None:
#证券权重数据为空时报错
raise AttributeError("PARAM::stock_weights must be passed in.")
self.use_pctchg = use_pctchg #是否采用pctchg进行回测净值计算
self.stock_pool = stock_weights.index #股票池
self.stock_weights = stock_weights #各组的证券权重
self.market_data = market_data #行情数据(全A股复权收盘价 或 A股日涨跌幅)
self.benchmark_data = benchmarkdata #基准(000300或000905日涨跌幅)
self.start_date = start_date #回测开始日期
self.end_date = end_date #回测结束日期
self.capital = initial_capital #可用资金
self.net_value = initial_capital #账户市值
self.curdate = None #当前调仓交易日对应日期
self.lstdate = None #上一个调仓交易日对应日期
if tradedays: #回测期内所有交易日list
tradedays = pd.to_datetime(tradedays)
else:
tradedays = pd.to_datetime(self.market_data.columns)
self.tradedays = sorted(tradedays)
if refreshdays: #回测期内所有调仓交易日list(默认为每个月首个交易日)
self.refreshdays = refreshdays
else:
self.refreshdays = list(self.get_refresh_days())
self.position_record = {} #每个交易日持仓记录
self.portfolio_record = {} #组合净值每日记录
self.rf_rate = rf_rate #无风险利率
def get_refresh_days(self):
"""
获取调仓日期(回测期内的每个月首个交易日)
"""
tdays = self.tradedays
sindex = self._get_date_idx(self.start_date)
eindex = self._get_date_idx(self.end_date)
tdays = tdays[sindex:eindex+1]
return (nd for td, nd in zip(tdays[:-1], tdays[1:])
if td.month != nd.month)
def _get_date_idx(self, date):
"""
返回传入的交易日对应在全部交易日列表中的下标索引
"""
datelist = list(self.tradedays)
date = pd.to_datetime(date)
try:
idx = datelist.index(date)
except ValueError:
datelist.append(date)
datelist.sort()
idx = datelist.index(date)
if idx == 0:
return idx + 1
else:
return idx - 1
return idx
def _get_stocks_weights(self, date):
"""
根据传入的交易日日期(当月第一个交易日)获取对应
前一截面(上个月最后一个交易日)的该层对应的各股票权重
"""
idx = self._get_date_idx(date)
date = self.tradedays[idx-1]
cur_stk_weights = self.stock_weights.loc[:, date]
return cur_stk_weights.dropna()
def run_backtest(self):
"""
回测主函数
"""
start_idx = self._get_date_idx(self.start_date)
end_idx = self._get_date_idx(self.end_date)
hold = False
for date in self.tradedays[start_idx:end_idx+1]: #对回测期内全部交易日遍历,每日更新净值
if date in self.refreshdays: #如果当日为调仓交易日,则进行调仓
hold = True
idx = self.refreshdays.index(date)
if idx == 0:
#首个调仓交易日
self.curdate = date
self.lstdate, self.curdate = self.curdate, date
if not self.use_pctchg:
stocks_to_buy = self._get_stocks_weights(date)
if len(stocks_to_buy) > 0:
#采用复权价格回测的情况下, 如果待买入股票列表非空,则进行调仓交易
self.rebalance(stocks_to_buy)
if hold:
#在有持仓的情况下,对净值每日更新计算
self.update_port_netvalue(date)
#回测后进行的处理
self.after_backtest()
def after_backtest(self):
#主要针对净值记录格式进行调整,将pctchg转换为净值数值;
#同时将持仓记录转化为矩
self.portfolio_record = pd.DataFrame(self.portfolio_record, index=[0]).T
if self.use_pctchg:
self.portfolio_record.columns = ['netval_pctchg']
self.portfolio_record['net_value'] = self.capital * (1 + self.portfolio_record['netval_pctchg']).cumprod()
#将基准列加入到净值记录表中
self.portfolio_record['benchmark_pctchg'] = self._get_benchmark()
self.portfolio_record['benchmark_nv'] = (1 + self.portfolio_record['benchmark_pctchg']).cumprod()
#上期期末(本期期初)的股票权重就可以看成本期(期末)的股票持仓
self.position_record = self.stock_weights.T.shift(1).T.dropna(how='all', axis=1)
else:
self.portfolio_record.columns = ['net_value']
nv_ret = self.portfolio_record['net_value'] / self.portfolio_record['net_value'].shift(1) - 1
self.portfolio_record['netval_pctchg'] = nv_ret.fillna(0)
#将基准列加入到净值记录表中
bm = self._get_benchmark()
self.portfolio_record['benchmark_nv'] = bm/bm[0]
bm_ret = self.portfolio_record['benchmark_nv'] / self.portfolio_record['benchmark_nv'].shift(1) - 1
self.portfolio_record['benchmark_pctchg'] = bm_ret.fillna(0)
#每期期初买入的股票数量就是每期的仓位
#self.position_record = pd.DataFrame.from_dict(self.position_record)
#上期期末(本期期初)的股票权重就可以看成本期(期末)的股票持仓
self.position_record = self.stock_weights.T.shift(1).T.dropna(how='all', axis=1)
def _get_latest_mktval(self, date):
"""
获取传入交易日对应持仓市值
"""
holdings = self.position_record[self.lstdate].items()
holding_codes = [code for code, num in holdings]
holding_nums = np.asarray([num for code, num in holdings])
latest_price = self.market_data.loc[holding_codes, date].values
holding_mktval = np.sum(holding_nums * latest_price)
return holding_mktval
def cal_weighted_pctchg(self, date):
weights = self._get_stocks_weights(self.curdate) #取上一个截面的股票权重列表
weights /= np.sum(weights) #保证所有权重加起来为1
codes = weights.index
pct_chg = self.market_data.loc[codes, date].values
return codes, np.nansum(pct_chg * weights.values) #当天的股票收益*上期期末(当期期初)的股票权重=当天持仓盈亏
def update_port_netvalue(self, date):
"""
更新每日净值
"""
if self.use_pctchg:
stk_codes, cur_wt_pctchg = self.cal_weighted_pctchg(date)
self.portfolio_record[date] = cur_wt_pctchg
else:
holding_mktval = self._get_latest_mktval(date)
total_val = self.capital + holding_mktval
self.portfolio_record[date] = total_val
def rebalance(self, stocks_data):
"""
调仓,实际将上一交易日对应持仓市值加入到可用资金中
"""
if self.position_record:
self.capital += self._get_latest_mktval(self.curdate)
self._buy(stocks_data)
def _buy(self, new_stocks_to_buy):
"""
根据最新股票列表买入,更新可用资金以及当日持仓
"""
codes = new_stocks_to_buy.index
trade_price = self.market_data.loc[codes, self.curdate]
stks_avail = trade_price.dropna().index
weights = new_stocks_to_buy.loc[stks_avail]
amount = weights / np.sum(weights) * self.capital
nums = amount / trade_price.loc[stks_avail]
self.capital -= np.sum(amount)
self.position_record[self.curdate] = {code:num for code, num in zip(stks_avail, nums)}
def summary(self, start_date=None, end_date=None):
#如果没有指定周期,那默认就是全周期
if start_date is None and end_date is None:
start_date, end_date = self.portfolio_record.index[0], self.portfolio_record.index[-1]
ann_ret = self._annual_return(None, start_date, end_date) #年化收益
ann_vol = self._annual_vol(None, start_date, end_date) #年化波动
sharpe = self._sharpe_ratio(start_date, end_date) #夏普比率
max_wd = self._max_drawdown(None, start_date, end_date) #最大回撤
ann_excess_ret = self._ann_excess_ret(start_date, end_date) #年化超额收益
te = self._te(start_date, end_date) #跟踪误差
ic_rate = self._ic_rate(start_date, end_date) #信息比率
win_rate = self._winning_rate(start_date, end_date) #相对基准日胜率
turnover_rate = self._turnover_rate(start_date, end_date) #换手率
summary = {
'年度收益': ann_ret,
'年度波动': ann_vol,
'夏普比率': sharpe,
'最大回撤': max_wd,
'年度超额收益': ann_excess_ret,
'跟踪误差': te,
'信息比率': ic_rate,
'日胜率': win_rate,
'换手率': turnover_rate
}
return pd.Series(summary)
def summary_yearly(self):
#先要运行回测,产生结果
if len(self.portfolio_record) == 0:
raise RuntimeError("请运行回测函数后再查看回测统计.")
#
all_dates = self.portfolio_record.index
#每年第一个交易日列表
start_dates = all_dates[:1].tolist() + list(before_date for before_date, after_date in zip(all_dates[1:], all_dates[:-1])
if before_date.year != after_date.year)
#每年最后一个交易日列表
end_dates = list(before_date for before_date, after_date in zip(all_dates[:-1], all_dates[1:])
if before_date.year != after_date.year) + all_dates[-1:].tolist()
#
res = pd.DataFrame()
#按年统计
for sdate, edate in zip(start_dates, end_dates):
summary_year = self.summary(sdate, edate)
summary_year.name = str(sdate.year)
res = pd.concat([res, summary_year], axis=1)
#整个周期统计一次
summary_all = self.summary()
summary_all.name = '总计'
res = pd.concat([res, summary_all], axis=1)
res = res.T[['年度收益','年度波动','夏普比率','最大回撤','年度超额收益','跟踪误差','信息比率','日胜率','换手率']]
return res
def _get_benchmark(self):
start_date, end_date = self.portfolio_record.index[0], self.portfolio_record.index[-1]
return self.benchmark_data.loc[start_date:end_date]
def _get_date_gap(self, start_date=None, end_date=None, freq='d'):
if start_date is None and end_date is None:
start_date = self.portfolio_record.index[0]
end_date = self.portfolio_record.index[-1]
days = (end_date - start_date) / toffsets.timedelta(1)
if freq == 'y':
return days / 365
elif freq == 'q':
return days / 365 * 4
elif freq == 'M':
return days / 365 * 12
elif freq == 'd':
return days
def _te(self, start_date=None, end_date=None):
''' 跟踪误差
'''
if start_date and end_date:
pr = self.portfolio_record.loc[start_date:end_date]
else:
pr = self.portfolio_record
td = (pr['netval_pctchg'] - pr['benchmark_pctchg'])
te = np.sqrt(min(len(pr), 252)) * np.sqrt(1 / (len(td) - 1) * np.sum((td - np.mean(td))**2))
return te
def _ic_rate(self, start_date=None, end_date=None):
''' 信息比率
'''
ann_excess_ret = self._ann_excess_ret(start_date, end_date)
excess_acc_ret = self._get_excess_acc_ret(start_date, end_date)
ann_excess_ret_vol = self._annual_vol(excess_acc_ret, start_date, end_date)
return (ann_excess_ret - self.rf_rate) / ann_excess_ret_vol
def _turnover_rate(self, start_date=None, end_date=None):
''' 换手率(双边,不除以2)
'''
positions = self.position_record.fillna(0).T
if start_date and end_date:
positions = positions.loc[start_date:end_date]
turnover_rate = np.sum(np.abs(positions - positions.shift(1)), axis=1)
turnover_rate = np.mean(turnover_rate) * 12
return turnover_rate
def _winning_rate(self, start_date=None, end_date=None):
''' 相对基准日胜率
'''
nv_pctchg = self.portfolio_record['netval_pctchg']
bm_pctchg = self.portfolio_record['benchmark_pctchg']
if start_date and end_date:
nv_pctchg, bm_pctchg = nv_pctchg.loc[start_date:end_date], bm_pctchg.loc[start_date:end_date]
win_daily = (nv_pctchg > bm_pctchg)
win_rate = np.sum(win_daily) / len(win_daily)
return win_rate
def _annual_return(self, net_vals=None, start_date=None, end_date=None):
''' 年化收益
'''
if net_vals is None:
net_vals = self.portfolio_record['net_value']
if start_date and end_date:
net_vals = net_vals.loc[start_date:end_date]
total_ret = net_vals.values[-1] / net_vals.values[0] - 1
date_gap = self._get_date_gap(start_date, end_date, freq='d')
exp = 365 / date_gap
ann_ret = (1 + total_ret) ** exp - 1
if date_gap <= 365:
return total_ret
else:
return ann_ret
def _annual_vol(self, net_vals=None, start_date=None, end_date=None):
''' 年化波动
'''
if net_vals is None:
net_vals = self.portfolio_record['net_value']
ret_per_period = net_vals / net_vals.shift(1) - 1
ret_per_period = ret_per_period.fillna(0)
if start_date and end_date:
ret_per_period = ret_per_period.loc[start_date:end_date]
ann_vol = ret_per_period.std() * np.sqrt(min(len(ret_per_period), 252))
return ann_vol
def _max_drawdown(self, acc_rets=None, start_date=None, end_date=None):
''' 最大回撤
'''
if acc_rets is None:
acc_rets = self.portfolio_record['net_value'] / self.portfolio_record['net_value'].values[0] - 1
if start_date and end_date:
acc_rets = acc_rets.loc[start_date:end_date]
max_drawdown = (1 - (1 + acc_rets) / (1 + acc_rets.expanding().max())).max()
return max_drawdown
def _sharpe_ratio(self, start_date=None, end_date=None, ann_ret=None, ann_vol=None):
''' 夏普比率
'''
if ann_ret is None:
ann_ret = self._annual_return(None, start_date, end_date)
if ann_vol is None:
ann_vol = self._annual_vol(None, start_date, end_date)
return (ann_ret - self.rf_rate) / ann_vol
def _get_excess_acc_ret(self, start_date=None, end_date=None):
bm_ret = self.portfolio_record['benchmark_pctchg']
nv_ret = self.portfolio_record['netval_pctchg']
if start_date and end_date:
bm_ret = bm_ret.loc[start_date:end_date]
nv_ret = nv_ret.loc[start_date:end_date]
excess_ret = nv_ret.values.flatten() - bm_ret.values.flatten()
excess_acc_ret = pd.Series(np.cumprod(1+excess_ret), index=nv_ret.index)
return excess_acc_ret
def _ann_excess_ret(self, start_date=None, end_date=None):
''' 年化超额收益
'''
excess_acc_ret = self._get_excess_acc_ret(start_date, end_date)
ann_excess_ret = self._annual_return(net_vals=excess_acc_ret, start_date=start_date, end_date=end_date)
return ann_excess_ret
#因子分层回测
class SingleFactorLayerDivisionBacktest:
def __init__(self, *, factor_name, factor_data, num_layers=5, if_concise=True, pct_chg_nm, **kwargs):
self.num_layers = num_layers #分层回测层数
self.factor_name = factor_name #因子名称
self.factor_data = factor_data #月频因子矩阵数据(行为证券代码,列为日期)
self.stock_pool = self.factor_data.index #股票池
self.if_concise = if_concise #是否使用简便回测方式,如是,则使用月涨跌幅进行回测,否则采用日度复权价格进行回测
self.pctchg_nm = pct_chg_nm
self.kwargs = kwargs
def run_layer_division_backtest(self, equal_weight=True):
#运行分层回测
if self.if_concise:
result = self._run_rapid_layer_divbt()
else:
stock_weights = self.get_stock_weight(equal_weight) #获取各层权重
result = pd.DataFrame()
for i in range(self.num_layers):
kwargs = deepcopy(self.kwargs)
kwargs['stock_weights'] = stock_weights[i]
bt = Backtest_stock(**kwargs)
bt.run_backtest()
bt.portfolio_record.index = [f'第{i+1}组']
result = pd.concat([result, bt.portfolio_record.T], axis=1)
print(f"{self.factor_name}分层回测结束!")
result.index.name = self.factor_name
return result
def _run_rapid_layer_divbt(self):
result = pd.DataFrame()
for date in self.pctchg_nm.columns: #按月计算每组收益率
cur_weights = self.get_stock_weight_by_group(self.factor_data[date], True) #输入:某因子在某时间点截面上所有股票上的暴露
'''
cur_weights 输出类似如下:
第1组 第2组 第3组 第4组 第5组
code
600366.SH 1.0 NaN NaN NaN NaN
000698.SZ 1.0 NaN NaN NaN NaN
002309.SZ NaN 1.0 NaN NaN NaN
600273.SH NaN 1.0 NaN NaN NaN
600076.SH NaN NaN 1.0 NaN NaN
002270.SZ NaN NaN 1.0 NaN NaN
000936.SZ NaN NaN NaN 1.0 NaN
600894.SH NaN NaN NaN 1.0 NaN
600110.SH NaN NaN NaN NaN 1.0
300118.SZ NaN NaN NaN NaN 1.0
'''
cur_pctchg_nm = self.pctchg_nm[date] #某时间点截面上所有股票下月的月收益率
group_monthly_ret = pd.Series()
for group in cur_weights.columns: #遍历每个组,计算每组收益率
group_weights = cur_weights[group].dropna()
cur_layer_stocks = group_weights.index
group_monthly_ret.loc[group] = np.nanmean(cur_pctchg_nm.loc[cur_layer_stocks]) #组内所有股票的下月收益率的平均值作为这组投资组合的收益
group_monthly_ret.name = date
result = pd.concat([result, group_monthly_ret], axis=1)
#对齐实际日期与对应月收益
#之前已经说过,每期截面文件其实包含的是下一期期初的因子值和期末的股票收益率,回测出来的结果也是下一期的结果,所以日期要重新对齐一下
'''
举例说明:比如对2015-1月到2016-12月共两年一共24个月进行回测,回测结果实际是2015-2月到2017年-1月,
然后删掉最后一个月,最后结果为2015-2月到2016年12月,共23个月
'''
months = result.columns[1:].tolist()
del result[months[-1]]
result.columns = months
'''
result.T 输出:
第1组 第2组 第3组 第4组 第5组
2017-02-28 0.046247 0.046360 0.050002 0.042777 0.040423
2017-03-31 -0.004145 -0.017438 -0.023409 -0.029284 -0.034262
2017-04-28 -0.052277 -0.082393 -0.087434 -0.088142 -0.087207
2017-05-31 -0.058413 -0.077954 -0.078603 -0.077872 -0.081385
'''
return result.T
def get_stock_weight(self, equal_weight=True):
#对权重的格式进行转换,以便后续回测
dates = self.factor_data.columns
stk_weights = [self.get_stock_weight_by_group(self.factor_data[date], equal_weight) for date in dates]
result = {date: stk_weight for date, stk_weight in zip(dates, stk_weights)}
result = pd.Panel.from_dict(result)
result = [result.minor_xs(group) for group in result.minor_axis]
return result
def get_stock_weight_by_group(self, factor, equal_weight=False):
#根据因子的大小降序排列
factor = factor.sort_values(ascending=False).dropna()
#计算获得各层权重
weights = self.cal_weight(factor.index)
result = pd.DataFrame(index=factor.index)
result.index.name = 'code'
for i in range(len(weights)):
labels = [factor.index[num] for num, weight in weights[i]]
values = [weight for num, weight in weights[i]]
result.loc[labels, f'第{i+1}组'] = values
if equal_weight:
#设置为等权
result = result.where(pd.isnull(result), 1)
return result
def cal_weight(self, stock_pool):
#权重计算方法参考华泰证券多因子系列研报
total_num = len(stock_pool)
weights = []
total_weights = 0; j = 0
for i in range(total_num):
total_weights += 1 / total_num
if i == 0:
weights.append([])
if total_weights > len(weights) * 1 / self.num_layers:
before = i, len(weights) * 1 / self.num_layers - \
sum(n for k in range(j+1) for m, n in weights[k])
after = i, 1 / total_num - before[1]
weights[j].append(before)
weights.append([])
weights[j+1].append(after)
j += 1
else:
cur = i, 1 / total_num
weights[j].append(cur)
#调整尾差
if len(weights[-1]) == 1:
weights.remove(weights[-1])
return weights
def panel_to_matrix(factors, factor_path=factor_path, save_path=sf_test_save_path):
"""
将经过预处理的因子截面数据转换为因子矩阵数据
"""
global industry_benchmark
factors_to_be_saved = [f.replace('/', '_div_') for f in factors]
factor_matrix_path = os.path.join(save_path, '因子矩阵') if not save_path.endswith('因子矩阵') else save_path
if not os.path.exists(factor_matrix_path):
os.mkdir(factor_matrix_path)
else:
factors = set(tuple(factors_to_be_saved)) - set(f.split('.')[0] for f in os.listdir(factor_matrix_path))
if len(factors) == 0:
return None
factors = sorted(f.replace('_div_', '/') for f in factors)
if '预处理' in factor_path:
factors.extend(['PCT_CHG_NM', f'industry_{industry_benchmark}', 'MKT_CAP_FLOAT'])
datpanel = {}
for f in os.listdir(factor_path):
open_name = f.replace('_div_', '/')
datdf = pd.read_csv(os.path.join(factor_path, open_name), encoding='gbk', index_col=['code'], engine='python')
date = pd.to_datetime(f.split('.')[0])
datpanel[date] = datdf[factors]
datpanel = pd.Panel(datpanel)
datpanel = datpanel.swapaxes(0, 2)
for factor in datpanel.items:
dat = datpanel.loc[factor]
save_name = factor.replace('/', '_div_') if '/' in factor else factor
dat.to_csv(os.path.join(factor_matrix_path, save_name+'.csv'), encoding='gbk')
def plot_layerdivision(records, fname, concise):
global sf_test_save_path, num_layers
layerdiv_figpath = os.path.join(sf_test_save_path, '分层回测', '分层图')
if not os.path.exists(layerdiv_figpath):
os.mkdir(layerdiv_figpath)
if concise:
records = np.cumprod(1+records)
records /= records.iloc[0] #换算成以1开始的净值
records = records.T / records.apply(np.mean, axis=1) #相对于整个市场的涨跌(所有组的均值看成是市场基准)
records = records.T
plt.plot(records)
plt.title(fname)
plt.legend(records.columns, loc=0)
save_name = fname.replace('/', '_div_') if '/' in fname else fname
plt.savefig(os.path.join(layerdiv_figpath, save_name+f'_{num_layers}.jpg'))
plt.close()
def bar_plot_yearly(records, fname, concise):
global sf_test_save_path, num_layers
barwidth = 1 / num_layers - 0.03
layerdiv_barpath = os.path.join(sf_test_save_path, '分层回测', '分年收益图')
if not os.path.exists(layerdiv_barpath):
os.mkdir(layerdiv_barpath)
if concise:
records_gp = records.groupby(pd.Grouper(freq='y'))
records = pd.DataFrame()
for year, month_ret in records_gp:
month_netvalue = np.cumprod(1+month_ret)
year_return = month_netvalue.iloc[-1] / month_netvalue.iloc[0] - 1
year_return.name = year
#if year == 2017:
# year_return = (1 + year_return) ** (12/11) - 1
records = pd.concat([records, year_return], axis=1)
records = records.T
else:
records = records.groupby(pd.Grouper(freq='y')).apply(lambda df: df.iloc[-1] / df.iloc[0] - 1)
#records = records.T - records.mean(axis=1)
#records = records.T
#减去5组间均值(可以理解为相对于市场基准,避免了市场整体涨跌对输出图像的影响)
records = records.T - records.mean(axis=1)
records = records.T
time = np.array([d.year for d in records.index])
plt.bar(time, records['第1组'], barwidth, color='blue', label='第1组')
plt.bar(time+barwidth, records['第2组'], barwidth, color='green', label='第2组')
plt.bar(time+2*barwidth, records['第3组'], barwidth, color='red', label='第3组')
plt.bar(time+3*barwidth, records['第4组'], barwidth, color='#E066FF', label='第4组')
plt.bar(time+4*barwidth, records['第5组'], barwidth, color='#EEB422', label='第5组')
plt.xticks(time+2.5*barwidth, time)
plt.legend(records.columns, loc=0)
save_name = fname.replace('/', '_div_') if '/' in fname else fname
plt.savefig(os.path.join(layerdiv_barpath, save_name+f'_{num_layers}.jpg'))
plt.close()
def plot_group_diff_plot(records, fname, concise):
global sf_test_save_path, num_layers, tick_spacing1
layerdiv_diffpath = os.path.join(sf_test_save_path, '分层回测', '组1-组5')
if not os.path.exists(layerdiv_diffpath):
os.mkdir(layerdiv_diffpath)
if concise:
records = np.cumprod(1+records)
records /= records.iloc[0]
records = (records['第1组'] - records['第5组']) / records['第1组']
time = [str(d)[:10] for d in records.index]
fig, ax = plt.subplots(1, 1)
ax.plot(time, records.values)
ax.xaxis.set_major_locator(ticker.MultipleLocator(tick_spacing1))
ax.set_title(fname)
save_name = fname.replace('/', '_div_') if '/' in fname else fname
fig.savefig(os.path.join(layerdiv_diffpath, save_name+f'_{num_layers}.jpg'))
plt.close()
def single_factor_test(factors):
global sf_test_save_path
print("\n开始进行T检验和IC检验...")
test_yearly(factors) #T检验&IC检验
print(f"检验完毕!结果见目录:{sf_test_save_path}")
print('*'*80)
def layer_division_backtest(factors):
global sf_test_save_path
from index_enhance import get_factor
start_date='2012-01-30' #月频简化回测用不上
end_date='2019-12-31' #月频简化回测用不上
if_concise = True #是否进行月频简化回测
factor_matrix_path = os.path.join(sf_test_save_path, '因子矩阵')
#创建分层回测结果图的存放目录
if not os.path.exists(os.path.join(sf_test_save_path, '分层回测')):
os.mkdir(os.path.join(sf_test_save_path, '分层回测'))
#创建因子矩阵文件,为分层回测做准备
panel_to_matrix(factors)
print('因子数据创建完毕')
pct_chg_nm = get_factor(['PCT_CHG_NM'])['PCT_CHG_NM']
#对选中的因子或者全部因子遍历
print("开始进行因子分层回测...")
for fname in factors: #逐个因子进行回测
openname = fname.replace('/', '_div_')
facdat = pd.read_csv(os.path.join(factor_matrix_path, openname+'.csv'), encoding='gbk', engine='python', index_col=[0])
facdat.columns = pd.to_datetime(facdat.columns)
s = SingleFactorLayerDivisionBacktest(factor_name=fname,
factor_data=facdat,
num_layers=5,
if_concise=if_concise,
start_date=start_date,
end_date=end_date,
pct_chg_nm=pct_chg_nm)
records = s.run_layer_division_backtest(equal_weight=True)
plot_layerdivision(records, fname, if_concise) #绘制分层图
bar_plot_yearly(records, fname, if_concise) #绘制分年分层收益柱形图
plot_group_diff_plot(records, fname, if_concise) #绘制组1-组5净值图
print(f"分层回测结束!结果见目录:{sf_test_save_path}")
print('*'*80)