forked from MetaSys-LISBP/acetate_regulation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path4-Regulation_analyses.R
186 lines (146 loc) · 9.74 KB
/
4-Regulation_analyses.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
###################
# Set environment #
###################
# load libraries and initialize environment
source("set_env.R")
############################################
# Load global sensitivity analysis results #
############################################
# This file is generated by script "1-Model_construction.R".
setwd(results_dir)
load("mc_results_100.RData")
#################################
# Metabolic regulation analyses #
#################################
setwd(model_dir)
loadModel("Millard2020_Ecoli_glc_ace_kinetic_model.cps")
setwd(results_dir)
# delete events and fix concentrations of biomass and extracellular glc and acetate
deleteEvent(getEvents()$key)
setSpecies(key="Ace_out", type="fixed")
setSpecies(key="Glc", type="fixed")
setSpecies(key="X", type="fixed")
n_step <- 300
delta_p <- 0.001
conc_threshold <- 14.27174
ace_range <- 10**(seq(-1, 2, length.out = n_step))
ace_range <- ace_range[abs(ace_range - conc_threshold) > 0.1]
res_reg <- array(NA, dim=c(ncol(fit_results$res_par)-1, length(ace_range), 4), dimnames=list(iter=NULL, r=NULL, c=c("ace_conc", "via_acetate_pathway", "via_glc_upt", "via_tca")))
# create progress bar
pb <- txtProgressBar(min=0, max=ncol(fit_results$res_par)-1, style=3)
for (j in seq(ncol(fit_results$res_par)-1)){
res_ace_regulation <- matrix(NA, nrow=length(ace_range), ncol=4, dimnames=list(r=NULL, c=c("ace_conc", "via_acetate_pathway", "via_glc_upt", "via_tca")))
for (i in seq(length(ace_range))){
rp <- c(fit_results$res_par[,j+1])
names(rp) <- fit_results$res_par[,"parameter"]
model <- update_params(getCurrentModel(), rp)
# set ace concentration
setSpecies(key="Ace_out{cell}", initial_concentration = ace_range[i], model=model)
applyInitialState(model=model)
# get steady-state
res_ss_i <- runSteadyState(update_model=TRUE, model=model)$global_quantities
# calculate control coefficients
res_MCA_R <- runMCA(model=model)$flux_control_coefficients_scaled
# calculate elasticities
# fix acetylCoA concentration to calculate elasticity of each pathway wrt acetate
setSpecies(key="AcCoA", type="fixed", model=model)
# change acetate concentration
setSpecies(key="Ace_out{cell}", initial_concentration = ace_range[i]*(1+delta_p), model=model)
applyInitialState(model=model)
# get steady-state
res_ss_i_eps <- runSteadyState(model=model)$global_quantities
# calculate elasticities (using the more stable numerical method, both being equivalent)
#elasticities <- (log(abs(res_ss_i_eps$value)) - log(abs(res_ss_i$value))) / log(1+delta_p)
#print(elasticities)
elasticities <- (res_ss_i_eps$value - res_ss_i$value) / delta_p / res_ss_i_eps$value
#print(elasticities)
# reset balance on accoa
setSpecies(key="AcCoA", type="reactions", model=model)
# calculate response coefficient
# acetate via Pta-AckA
res_reg_ace_ace <- sum(res_MCA_R["(ackA)", c("(ackA)", "(pta)", "(ace_xch)")]) * elasticities[res_ss_i_eps$key == "Values[v_ace_net]"]
# acetate via glc uptake
res_reg_ace_glc <- res_MCA_R["(ackA)", "(glc_upt)"] * elasticities[res_ss_i_eps$key == "Values[v_glc_uptake]"]
# acetate via sink
res_reg_ace_tca <- res_MCA_R["(ackA)", "(sink)"] * elasticities[res_ss_i_eps$key == "Values[v_growth_rate]"]
res_ace_regulation[i,] <- c(ace_range[i], res_reg_ace_ace, res_reg_ace_glc, res_reg_ace_tca)
}
# save results
res_reg[j,,] <- res_ace_regulation
# update the progress bar
setTxtProgressBar(pb, j)
}
# close progress bar
close(pb)
# plot regulation results
pdf(file="Figure 6.pdf", width = 7, height = 9)
par(mfrow=c(4,3))
xlab_main <- c(0.1, 1, 10, 100)
xlab_sec <- c(seq(0.2, 0.9, by=0.1), seq(2, 9, by=1), seq(20, 90, by=10))
conc_threshold <- 14.5
# plot partitioned response coefficients
fconc_max <- 1.12
fconc_min <- 0.82
lines_threshold(ace_range, apply(res_reg[,,"via_acetate_pathway"], 2, median), threshold=conc_threshold, new=TRUE, xaxt="n", las=1, xaxs="i", yaxs="i", col="#2E75B6", xlim=c(0.1,100), type="l", log="x", ylim=c(-5, 5), xlab="[acetate] (mM)", ylab="R_ace_pathway", lwd=1.2)
polygon(x=c(ace_range[ace_range < conc_threshold*fconc_min], rev(ace_range[ace_range < conc_threshold*fconc_min])),
y=c(apply(res_reg[,ace_range < conc_threshold*fconc_min,"via_acetate_pathway"], 2, max), rev(apply(res_reg[,ace_range < conc_threshold*fconc_min,"via_acetate_pathway"], 2, min))),
col="#2E75B655", border=NA)
polygon(x=c(ace_range[ace_range > conc_threshold*fconc_max], rev(ace_range[ace_range > conc_threshold*fconc_max])),
y=c(apply(res_reg[,ace_range > conc_threshold*fconc_max,"via_acetate_pathway"], 2, max), rev(apply(res_reg[,ace_range > conc_threshold*fconc_max,"via_acetate_pathway"], 2, min))),
col="#2E75B655", border=NA)
axis(side = 1, at = xlab_main, labels = TRUE)
axis(side = 1, at = xlab_sec, labels = FALSE, tcl=-0.3)
abline(h=0)
fconc_max <- 1.12
fconc_min <- 0.84
lines_threshold(ace_range, apply(res_reg[,,"via_glc_upt"], 2, median), threshold=conc_threshold, new=TRUE, xaxt="n", las=1, xaxs="i", yaxs="i", col="#D6685C", xlim=c(0.1,100), type="l", log="x", ylim=c(-5, 5), xlab="[acetate] (mM)", ylab="R_Glc_uptake", lwd=1.2)
polygon(x=c(ace_range[ace_range < conc_threshold*fconc_min], rev(ace_range[ace_range < conc_threshold*fconc_min])),
y=c(apply(res_reg[,ace_range < conc_threshold*fconc_min,"via_glc_upt"], 2, max), rev(apply(res_reg[,ace_range < conc_threshold*fconc_min,"via_glc_upt"], 2, min))),
col="#D6685C55", border=NA)
polygon(x=c(ace_range[ace_range > conc_threshold*fconc_max], rev(ace_range[ace_range > conc_threshold*fconc_max])),
y=c(apply(res_reg[,ace_range > conc_threshold*fconc_max,"via_glc_upt"], 2, max), rev(apply(res_reg[,ace_range > conc_threshold*fconc_max,"via_glc_upt"], 2, min))),
col="#D6685C55", border=NA)
axis(side = 1, at = xlab_main, labels = TRUE)
axis(side = 1, at = xlab_sec, labels = FALSE, tcl=-0.3)
abline(h=0)
lines_threshold(ace_range, apply(res_reg[,,"via_tca"], 2, median), threshold=conc_threshold, new=TRUE, xaxt="n", las=1, xaxs="i", yaxs="i", col="#70AD47", xlim=c(0.1,100), type="l", log="x", ylim=c(-5, 5), xlab="[acetate] (mM)", ylab="R_TCA", lwd=1.2)
polygon(x=c(ace_range[ace_range < conc_threshold*fconc_min], rev(ace_range[ace_range < conc_threshold*fconc_min])),
y=c(apply(res_reg[,ace_range < conc_threshold*fconc_min,"via_tca"], 2, max), rev(apply(res_reg[,ace_range < conc_threshold*fconc_min,"via_tca"], 2, min))),
col="#70AD4755", border=NA)
polygon(x=c(ace_range[ace_range > conc_threshold*fconc_max], rev(ace_range[ace_range > conc_threshold*fconc_max])),
y=c(apply(res_reg[,ace_range > conc_threshold*fconc_max,"via_tca"], 2, max), rev(apply(res_reg[,ace_range > conc_threshold*fconc_max,"via_tca"], 2, min))),
col="#70AD4755", border=NA)
axis(side = 1, at = xlab_main, labels = TRUE)
axis(side = 1, at = xlab_sec, labels = FALSE, tcl=-0.3)
abline(h=0)
# plot contribution of each pathway
fconc_max <- 1.14
fconc_min <- 0.84
contributio_ace <- res_reg[,,"via_acetate_pathway"]/apply(res_reg[,,2:4], 1:2, FUN=function(x) sum(abs(x)))
lines_threshold(ace_range, apply(contributio_ace, 2, median), threshold=conc_threshold, new=TRUE, xaxt="n", las=1, xaxs="i", yaxs="i", xlim=c(0.1,100), type="l", log="x", xlab="[acetate] (mM)", ylab="relative_R", ylim=c(-0.7, 0.7), lwd=1.2, col="#2E75B6")
polygon(x=c(ace_range[ace_range < conc_threshold*fconc_min], rev(ace_range[ace_range < conc_threshold*fconc_min])),
y=c(apply(contributio_ace[,ace_range < conc_threshold*fconc_min], 2, max), rev(apply(contributio_ace[,ace_range < conc_threshold*fconc_min], 2, min))),
col="#2E75B655", border=NA)
polygon(x=c(ace_range[ace_range > conc_threshold*fconc_max], rev(ace_range[ace_range > conc_threshold*fconc_max])),
y=c(apply(contributio_ace[,ace_range > conc_threshold*fconc_max], 2, max), rev(apply(contributio_ace[,ace_range > conc_threshold*fconc_max], 2, min))),
col="#2E75B655", border=NA)
axis(side = 1, at = xlab_main, labels = TRUE)
axis(side = 1, at = xlab_sec, labels = FALSE, tcl=-0.3)
abline(h=0)
contributio_glc_upt <- res_reg[,,"via_glc_upt"]/apply(res_reg[,,2:4], 1:2, FUN=function(x) sum(abs(x)))
lines_threshold(ace_range, apply(contributio_glc_upt, 2, median), threshold=conc_threshold, new=FALSE, type="l", col="#D6685C", lwd=1.2)
polygon(x=c(ace_range[ace_range < conc_threshold*fconc_min], rev(ace_range[ace_range < conc_threshold*fconc_min])),
y=c(apply(contributio_glc_upt[,ace_range < conc_threshold*fconc_min], 2, max), rev(apply(contributio_glc_upt[,ace_range < conc_threshold*fconc_min], 2, min))),
col="#D6685C55", border=NA)
polygon(x=c(ace_range[ace_range > conc_threshold*fconc_max], rev(ace_range[ace_range > conc_threshold*fconc_max])),
y=c(apply(contributio_glc_upt[,ace_range > conc_threshold*fconc_max], 2, max), rev(apply(contributio_glc_upt[,ace_range > conc_threshold*fconc_max], 2, min))),
col="#D6685C55", border=NA)
contributio_tca <- res_reg[,,"via_tca"]/apply(res_reg[,,2:4], 1:2, FUN=function(x) sum(abs(x)))
lines_threshold(ace_range, apply(contributio_tca, 2, median), threshold=conc_threshold, new=FALSE, type="l", col="#70AD47", lwd=1.2)
polygon(x=c(ace_range[ace_range < conc_threshold*fconc_min], rev(ace_range[ace_range < conc_threshold*fconc_min])),
y=c(apply(contributio_tca[,ace_range < conc_threshold*fconc_min], 2, max), rev(apply(contributio_tca[,ace_range < conc_threshold*fconc_min], 2, min))),
col="#70AD4755", border=NA)
polygon(x=c(ace_range[ace_range > conc_threshold*fconc_max], rev(ace_range[ace_range > conc_threshold*fconc_max])),
y=c(apply(contributio_tca[,ace_range > conc_threshold*fconc_max], 2, max), rev(apply(contributio_tca[,ace_range > conc_threshold*fconc_max], 2, min))),
col="#70AD4755", border=NA)
dev.off()